DOI QR코드

DOI QR Code

PAPR reduction of OFDM systems using H-SLM method with a multiplierless IFFT/FFT technique

  • Sivadas, Namitha A. (School of Electronics Engineering, Vellore Institute of Technology)
  • 투고 : 2020.08.16
  • 심사 : 2021.08.03
  • 발행 : 2022.06.10

초록

This study proposes a novel low-complexity algorithm for computing inverse fast Fourier transform (IFFT)/fast Fourier transform (FFT) operations in binary phase shift keying-modulated orthogonal frequency division multiplexing (OFDM) communication systems without requiring any twiddle factor multiplications. The peak-to-average power ratio (PAPR) reduction capacity of an efficient PAPR reduction technique, that is, H-SLM method, is evaluated using the proposed IFFT algorithm without any complex multiplications, and the impact of oversampling factor for the accurate calculation of PAPR is analyzed. The power spectral density of an OFDM signal generated using the proposed multiplierless IFFT algorithm is also examined. Moreover, the bit-error-rate performance of the H-SLM technique with the proposed IFFT/FFT algorithm is compared with the classical methods. Simulation results show that the proposed IFFT/FFT algorithm used in the H-SLM method requires no complex multiplications, thereby minimizing power consumption as well as the area of IFFT/FFT processors used in OFDM communication systems.

키워드

참고문헌

  1. M. Torabi, Adaptive modulation for space-frequency block coded OFDM systems, AEU-Int. J. Electron. Commun. 62 (2008), no. 7, 521-533. https://doi.org/10.1007/11758501_144
  2. K. Maharatna, E. Grass, and U. Jagdhold, A 64-point Fourier transform chip for high-speed wireless LAN application using OFDM, IEEE J. Solid-State Circ. 39 (2004), no. 3, 484-493. https://doi.org/10.1109/JSSC.2003.822776
  3. C. Yu, Y.-T. Liao, M.-H. Yen, P.-A. Hsiung, and S.-J. Chen, A novel low-power 64-point pipelined FFT/IFFT processor for OFDM applications, in Proc. IEEE Int. Conf. Consumer Electron. (Las Vegas, NV, USA), 2011, pp. 441-442. https://doi.org/10.1109/ICCE.2011.5722673
  4. C. Yu, M.-H. Yen, P.-A. Hsiung, and S.-J. Chen, A low-power 64-point pipeline FFT/IFFT processor for OFDM applications, IEEE Trans. Consumer Electron. 57 (2011), no. 1, 40-40. https://doi.org/10.1109/TCE.2011.5735479
  5. A. Anbarasan and K. Shankar, Design and implementation of low power FFT/IFFT processor for wireless communication, in Proc. IEEE Int. Conf. Pattern Recogn., Inform. Med. Eng. (Salem, India), 2012, pp. 152-155. https://doi.org/10.1109/ICPRIME.2012.6208304
  6. M. Arioua and M. M. Hassani, Low complexity FFT/IFFT processor applied for OFDM transmission system in wireless broadband, Int. J. Comput. Electr. Eng. 6 (2014), no. 2, 167-171. https://doi.org/10.7763/IJCEE.2014.V6.815
  7. C. Wang, Y. Yan, and X. Fu, A high-throughput low-complexity Radix-2 FFT/IFFT processor with parallel and normal input/output order for IEEE 802.11 ad systems, IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 23 (2015), no. 11, 2728-2732. https://doi.org/10.1109/TVLSI.2014.2365586
  8. R. W. Bauml, R. F. H. Fischer, and J. B. Huber, Reducing the peak-to-average power ratio of multicarrier modulation by selected mapping, IET Electron. Lett. 32 (1996), no. 22, 2056-2057. https://doi.org/10.1049/el:19961384
  9. A. S. Namitha and S. M. Sameer, An improved technique to reduce peak to average power ratio in OFDM systems using Gold/Hadamard codes with selective mapping, in Proc. Int. Conf. Signal Process. Communications (Bangalore, India), 2014, pp. 1-6. https://doi.org/10.1109/SPCOM.2014.6983972
  10. L. Wang and J. Liu, PAPR reduction of OFDM signals by PTS with grouping and recursive phase weighting methods, IEEE Trans. Broadcast. 57 (2011), no. 2, 299-306. https://doi.org/10.1109/TBC.2011.2111210
  11. M. M. Hasan, PAPR reduction in OFDM systems based on autoregressive filtering, Circ., Syst., Sig. Process. 33 (2014), no. 5, 1637-1654. https://doi.org/10.1007/s00034-013-9711-3
  12. T. Jiang and X. Li, Using fountain codes to control the peak-to-average power ratio of OFDM signals, IEEE Trans. Veh. Tech. 59 (2010), no. 8, 3779-3785. https://doi.org/10.1109/TVT.2010.2053397
  13. N. A. Sivadas and S. S. Mohammed, A joint technique for sidelobe suppression and peak-to-average power ratio reduction in non-contiguous OFDM-based cognitive radio networks, Int. J. Electron. 104 (2017), no. 2, 190-203. https://doi.org/10.1080/00207217.2016.1196747
  14. K. T. Wong, B. Wang, and J.-C. Chen, OFDM PAPR reduction by switching null subcarriers and data-subcarriers, IET Electron. Lett. 47 (2011), no. 1, 62-63. https://doi.org/10.1049/el.2010.2854
  15. A. S. Namitha and S. M. Sameer, A combined technique for carrier frequency offset estimation and peak-to-average power ratio reduction in OFDM systems using null subcarriers and Cuckoo search algorithm, Telecommun. Syst. 63 (2016), no. 2, 275-285. https://doi.org/10.1007/s11235-015-0119-1
  16. A. S. Namitha and S. M. Sameer, A novel joint method for frequency offset estimation and peak-to-average power ratio reduction in ofdm systems using null subcarriers, Wirel. Pers. Commun. 83 (2015), no. 1, 343-359. https://doi.org/10.1007/s11277-015-2396-0
  17. Y. Wang and Z. Luo, Optimized iterative clipping and filtering for PAPR reduction of OFDM signals, IEEE Trans. Commun. 59 (2011), no. 1, 33-37. https://doi.org/10.1109/TCOMM.2010.102910.090040
  18. B. M. Lee and Y. Kim, An adaptive clipping and filtering technique for PAPR reduction of OFDM signals, Circ., Syst., Sig. Process. 32 (2013), no. 3, 1335-1349. https://doi.org/10.1007/s00034-012-9512-0
  19. J. Hou, C. Tellambura, and J. Ge, Tone injection for PAPR reduction using parallel tabu search algorithm in OFDM systems, in Proc. IEEE Global Telecommun. Conf. (Anaheim, CA, USA), 2012, pp. 4899-4904. https://doi.org/10.1109/GLOCOM.2012.6503895
  20. D. Guel, J. Palicot, and Y. Loue, Tone reservation technique based on geometric method for orthogonal frequency division multiplexing peak-to-average power ratio reduction, IET Commun. 4 (2010), no. 17, 2065-2073. https://doi.org/10.1049/iet-com.2009.0808
  21. S. Gokceli, T. Levanen, T. Riihonen, M. Renfors, and M. Valkama, Frequency-selective PAPR reduction for OFDM, IEEE Trans. Veh. Technol. 68 (2019), no. 6, 6167-6171. https://doi.org/10.1109/TVT.2019.2909643
  22. M. H. Aghdam and A. A. Sharifi, PAPR reduction in OFDM systems: An efficient PTS approach based on particle swarm optimization, ICT Express 5 (2019), no. 3, 178-181. https://doi.org/10.1016/j.icte.2018.10.003
  23. M. Hu, W. Wang, W. Cheng, and H. Zhang, A generalized piecewise linear companding transform for PAPR reduction in OFDM systems, IEEE Trans. Broadcast. 66 (2019), no. 1, 170-176. https://doi.org/10.1109/TBC.2019.2909183
  24. S. K. Kaliki, S. P Golla, and R. N, Kurukundu, An optimization technique for simultaneous reduction of PAPR and out-of-band power in NC-OFDM-based cognitive radio systems, ETRI J. 43 (2021), no. 1, 7-16. https://doi.org/10.4218/etrij.2019-0255
  25. A. S. Namitha and S. M. Sameer, An improved selective mapping technique to reduce peak-to-average power ratio in SISO and SIMO OFDM systems without side information, Circ., Syst., Sig. Process. 36 (2017), no. 10, 4181-4206. https://doi.org/10.1007/s00034-017-0512-y
  26. A. S. Namitha and S. M. Sameer, A bandwidth efficient selective mapping technique for the PAPR reduction in spatial multiplexing MIMO-OFDM wireless communication system, Phys. Commun. 25 (2017), no. 2, 128-138. https://doi.org/10.1016/j.phycom.2017.09.009
  27. G. J. Miao and M. A. Clements, Digital signal processing and statistical classification, Artech House, Norwood, MA, USA, 2002.
  28. Y. A. Al-Jawhar, K. N. Ramli, M. A. Taher, N. S. M. Shah, L. Audah, and M. S. Ahmed, Zero-padding techniques in OFDM systems, Int. J. Electr. Eng. Inform. 10 (2018), no. 4, 704-725. https://doi.org/10.15676/ijeei.2018.10.4.6
  29. S. Meymanatabadi, J. M. Niya, and B. Mozaffari, Selected mapping technique for PAPR reduction without side information based on m-sequence, Wirel. Persnal Commun. 71 (2013), no. 4, 2523-2534. https://doi.org/10.1007/s11277-012-0953-3
  30. F. Danilo-Lemoine, D. Falconer, C.-T. Lam, M. Sabbaghian, and K. Wesolowski, Power backoff reduction techniques for generalized multicarrier waveforms, EURASIP J. Wirel. Commun. Netw. 2008 (2007), 1-13. https://doi.org/10.1155/2008/437801