DOI QR코드

DOI QR Code

Comparing automated and non-automated machine learning for autism spectrum disorders classification using facial images

  • Elshoky, Basma Ramdan Gamal (Information Technology Section, Korean Egyptian Faculty for Industry and Energy Technology, Beni Suef Technological University) ;
  • Younis, Eman M.G. (Department of Information Systems, Faculty of Computers and Information, Minia University) ;
  • Ali, Abdelmgeid Amin (Computer Science Department, Faculty of Science, Minia University) ;
  • Ibrahim, Osman Ali Sadek (Computer Science Department, Faculty of Science, Minia University)
  • Received : 2021.03.30
  • Accepted : 2021.09.27
  • Published : 2022.08.10

Abstract

Autism spectrum disorder (ASD) is a developmental disorder associated with cognitive and neurobehavioral disorders. It affects the person's behavior and performance. Autism affects verbal and non-verbal communication in social interactions. Early screening and diagnosis of ASD are essential and helpful for early educational planning and treatment, the provision of family support, and for providing appropriate medical support for the child on time. Thus, developing automated methods for diagnosing ASD is becoming an essential need. Herein, we investigate using various machine learning methods to build predictive models for diagnosing ASD in children using facial images. To achieve this, we used an autistic children dataset containing 2936 facial images of children with autism and typical children. In application, we used classical machine learning methods, such as support vector machine and random forest. In addition to using deep-learning methods, we used a state-of-the-art method, that is, automated machine learning (AutoML). We compared the results obtained from the existing techniques. Consequently, we obtained that AutoML achieved the highest performance of approximately 96% accuracy via the Hyperpot and tree-based pipeline optimization tool optimization. Furthermore, AutoML methods enabled us to easily find the best parameter settings without any human efforts for feature engineering.

Keywords

References

  1. A. Cox, K. Klein, T. Charman, G. Baird, S. Baron-Cohen, J. Swettenham, A. Drew, and S. Wheelwright, Autism spectrum disorders at 20 and 42 months of age: Stability of clinical and ADI-R diagnosis, J. Child Psychol. Psychiatry 40 (1999), no. 5, 719-732. https://doi.org/10.1111/1469-7610.00488
  2. A. Kleinsmith and N. Bianchi-Berthouze, Affective body expression perception and recognition: A survey, IEEE Trans. Affect. Comput. 4 (2012), no. 1, 15-33. https://doi.org/10.1109/T-AFFC.2012.16
  3. M. Boutrus, S. Z. Gilani, G. A. Alvares, M. T. Maybery, D. W. Tan, A. Mian, and A. J. O. Whitehouse, Increased facial asymmetry in autism spectrum conditions is associated with symptom presentation, Autism. Research 12 (2019), no. 12, 1774-1783. https://doi.org/10.1002/aur.2161
  4. S. Russell and P. Norvig, Artificial intelligence: A modern approach, 3rd ed., Prentice Hall Press, USA, 2009.
  5. C. M. Bishop, Pattern recognition and machine learning, Springer, 2006.
  6. M. Feurer and F. Hutter, Hyperparameter optimization, Automated machine learning, Springer, Cham, 2019, pp. 3-33.
  7. M. Blohm, M. Hanussek, and M. Kintz, Leveraging automated machine learning for text classification: Evaluation of AutoML tools and comparison with human performance, 2020. arXiv preprint arXiv:2012.03575.
  8. J. Dafflon, W. H. L. Pinaya, F. Turkheimer, J. H. Cole, R. Leech, M. A. Harris, S. R. Cox, H. C. Whalley, A. M. McIntosh, and P. J. Hellyer, An automated machine learning approach to predict brain age from cortical anatomical measures, Hum. Brain Mapp. 41 (2020), no. 13, 3555-3566. https://doi.org/10.1002/hbm.25028
  9. T. Han, F. N. B. Gois, R. Oliveira, L. R. Prates, and M. M. De Almeida Porto, Modeling the progression of COVID-19 deaths using Kalman Filter and AutoML, Soft. Comput. 1 (2021), 1-16.
  10. J. M. Rehg, Behavior imaging: Using computer vision to study autism, in Proc. IAPR Conf. Machine. Vision Appicat. (Nara, Japan) June 2011, pp. 14-21.
  11. S. Rajagopalan, A. Dhall, and R. Goecke, Self-stimulatory behaviours in the wild for autism diagnosis, in Proc. IEEE Int. Conf. Comput. Vision Workshops (Sydney, Australia), Dec. 2013, pp. 755-761.
  12. S. S. Rajagopalan, Computational behaviour modelling for autism diagnosis, in Proc. ACM Int. Conf. Multimodal Interaction (Sydney Australia), Dec. 2013, pp. 361-364.
  13. J. Rehg, G. Abowd, A. Rozga, M. Romero, M. Clements, S. Sclaroff, I. Essa, O. Ousley, Y. Li, and C. Kim, Decoding children's social behavior, in Proc. IEEE Conf. Comput. Vision Pattern Recogn. (Portland, OR, USA), June 2013, pp. 3414-3421.
  14. M. Leo, P. Carcagni, C. Distante, P. L. Mazzeo, P. Spagnolo, A. Levante, S. Petrocchi, and F. Lecciso, Computational analysis of deep visual data for quantifying facial expression production, Appl. Sci. 9 (2019), no. 21, 4542. https://doi.org/10.3390/app9214542
  15. M. D. Samad, N. Diawara, J. L. Bobzien, J. W. Harrington, M. A. Witherow, and K. M. Iftekharuddin, A feasibility study of autism behavioral markers in spontaneous facial, visual, and hand movement response data, IEEE Trans. Neural Syst. Rehabil. Eng. 26 (2017), no. 2, 353-361. https://doi.org/10.1109/tnsre.2017.2768482
  16. P. Mazumdar, G. Arru, and F. Battisti, Early detection of children with autism spectrum disorder based on visual exploration of images, Signal Process. Image Commun. 94 (2021), 116184. https://doi.org/10.1016/j.image.2021.116184
  17. M. Leo, P. Carcagni, P. L. Mazzeo, P. Spagnolo, D. Cazzato, and C. Distante, Analysis of facial information for healthcare applications: A survey on computer vision-based approaches, Information 11 (2020), no. 3. https://doi.org/10.3390/info11030128
  18. W. Liu, M. Li, and L. Yi, Identifying children with autism spectrum disorder based on their face processing abnormality: A machine learning framework, Autism Res. 9 (2016), no. 8, 888-898. https://doi.org/10.1002/aur.1615
  19. V. S. P. Patnam, F. T. George, K. George, and A. Verma, Deep learning based recognition of meltdown in autistic kids, in Proc. IEEE Int. Conf. Healthcare Inform. (Park City, UT, USA), Aug. 2017, pp. 391-396.
  20. O. Rudovic, Y. Utsumi, J. Lee, J. Hernandez, E. C. Ferrer, B. Schuller, and R. W. Picard, Culturenet: A deep learning approach for engagement intensity estimation from face images of children with autism, in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (Madrid, Spain), Oct. 2018, pp. 339-346.
  21. F. C. Tamilarasi, and J. Shanmugam, Convolutional neural network based autism classification, in Proc. Int. Conf. Commun. Electron. Syst. (Coimbatore, India), June 2020, pp. 1208-1212.
  22. M. Beary, A. Hadsell, R. Messersmith, and M.-P. Hosseini, Diagnosis of autism in children using facial analysis and deep learning, 2020. arXiv preprint arXiv:2008.02890.
  23. S. Jahanara and S. Padmanabhan, Detecting autism from facial image, 2021.
  24. Gerry PIOSENKA, Autistic children data set | Kaggle, 2020.
  25. E. Bisong, Google Colaboratory, Building machine learning and deep learning models on Google Cloud Platform: A comprehensive guide for beginners, Apress, Berkeley, CA, 2019, pp. 59-64.
  26. F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, Scikit-learn: Machine learning in Python, J. Mach. Learn. Res. 12 (2011), 2825-2830.
  27. G. Bradski, The OpenCV library, Dr. Dobb's J Softw Tools (2000).
  28. Francois. Chollet, and other, Keras, 2015. https://github.com/fchollet/keras
  29. J. Bergstra, D. Yamins, and D. D. Cox, Hyperopt: A python library for optimizing the hyperparameters of machine learning algorithms, in Proc. Python Sci. Conf. (Austin, TX, USA), 2013, pp. 13-19.
  30. B. Komer, J. Bergstra, and C. Eliasmith, Hyperopt-sklearn: Automatic hyperparameter configuration for scikit-learn, in Proc. Python Sci. conf., 2014, pp. 32-37.
  31. R. S. Olson, N. Bartley, R. J. Urbanowicz, and J. H. Moore, Evaluation of a tree-based pipeline optimization tool for automating data science, in Proc. Genetic Evolutionary Computat. Conf. (Denver, CO, USA), July 2016, pp. 485-492.
  32. F.-A. Fortin, F.-M. De Rainville, M.-A. G. Gardner, M. Parizeau, and C. Gagne, DEAP: Evolutionary algorithms made easy, J. Mach. Learn. Res. 13 (2012), no. 1, 2171-2175.