DOI QR코드

DOI QR Code

Technological Trends of C-/X-/Ku-band GaN Monolithic Microwave Integrated Circuit for Next-Generation Radar Applications

차세대 레이더용 C-/X-/Ku-대역 GaN 집적회로 기술 동향

  • Published : 2022.10.01

Abstract

GaN (Gallium-Nitride) is a promising candidate material in various radio frequency applications due to its inherent properties including wide bandgap, high carrier concentration, and high electron mobility/saturation velocity. Notably, AlGaN/GaN heterostructure field effect transistor exhibits high operating voltage and high power-density/power at high frequency. In next-generation radar systems, GaN power transistors and monolithic microwave integrated circuits (MMICs) are significant components of transmitting and receiving modules. In this paper, we introduce technological trends for C-/X-/Ku-band GaN MMICs including power amplifiers, low noise amplifiers and switch MMICs, focusing on the status of GaN MMIC fabrication technology and GaN foundry service. Additionally, we review the research for the localization of C-/X-/Ku-band GaN MMICs using in-house GaN transistor and MMIC fabrication technology. We also discuss the results of C-/X-/Ku-band GaN MMICs developed at Defense Materials and Components Convergence Research Department in ETRI.

Keywords

Acknowledgement

This work was supported by the National Research Council of Science & Technology(NST) grant by the Korea government(MSIT) (No. CRC-19-02-ETRI).

References

  1. N.J. Lolias et al., "GaN technology for microwave and millimeter wave applications," in Proc. IEEE MTT-S Int. Microw. Symp., (Anaheim, CA, USA), May 2010.
  2. J.C. Zolper, "Wide bandgap semiconductor microwave technologies: From promise to practice," in Proc. Int. Electron Devices Meeting (IEDM), Tech. Dig., (Washington, DC, USA), Aug. 1999, pp. 289-392.
  3. C.E. Weitzel, "RF power devices for wireless communications," in Proc. IEEE Radio Frequency Integrated Circuits Symp., (Seattle, WA, USA), June 2002, pp. 369-372.
  4. S.J. Pearton, C.R. Abernathy, and F. Ren, Gallium Nitride Processing for Electronics, Sensors and Spintronics, Springer, London, United Kingdom, 2006.
  5. 이상흥 외, "ETRI 0.25㎛ GaN MMIC 공정 및 X-대역 전력증폭기 MMIC," 한국전자파학회논문지, 제28권 제1호, 2017, pp. 1-9. https://doi.org/10.5515/KJKIEES.2017.28.1.1
  6. H.-T. Kwak et al., "Operational improvement of AlGaN/GaN high electron mobility transistor by an inner field-plate structure," Appl. Sci., vol. 8, no. 6, 2018, pp. 1-14.
  7. H.-T. Kwak et al., "DC characteristics of AlGaN/GaN high-electron mobility transistor with a bottom plate connected to source-bridged field plate structure," J. Nanosci. Nanotechnol., vol. 19, no. 4, 2019, pp. 2319-2322. https://doi.org/10.1166/jnn.2019.16004
  8. 이상흥 외, "차세대 GaN 고주파 고출력 전력증폭기 기술동향," 전자통신동향분석, 제29권 제6호, 2014, pp. 1-13. https://doi.org/10.22648/ETRI.2014.J.290601
  9. U.K. Mishra, P. Parikh, and Y.F. Wu, "AlGaN/GaN HEMTs-An overview of device operation and applications," Proc. IEEE, vol. 90, no. 6, 2002.
  10. 이상흥 외 , "차세대 GaN RF 전력증폭 소자 및 집적회로 기술동향," 전자통신동향분석, 제34권 제5호, 2019, pp. 71-80. https://doi.org/10.22648/ETRI.2019.J.340507
  11. Yole Developement, "GaN RF Market," 2019.
  12. G . Lerude, "Survey of RF GaN fabs: Successful commercialization and global supply," Microw. J., June 2021.
  13. https://www.qorvo.com/foundry
  14. https://www.ums-rf.com/foundry-old/technologies/
  15. https://www.winfoundry.com/en-US/Tech/tech_advanced
  16. https://www.wolfspeed.com/products/rf/foundry-services/#foundry-gan
  17. https://www.ommic.com/iii-v-processes/
  18. 김민철, "초고주파 전력증폭기 MMIC 기술 동향 및 개발 현황," 제14회 군수용 초고주파부품 워크샵, 2021.
  19. 권호상 외 , "S-대역 300W급 GaN HEMT 내부 정합 전력증폭기," 한국전자파학회논문지, 제31권 제1호, 2020, pp. 43-50.
  20. S. Lee et al., "Qualification of Wavice Baseline GaN HEMT process with 0.4㎛ gate on 4" SiC wafers," CS-MANTECH, May 2022.
  21. S. Lee et al., "3.4~3.8GHz 20W compact 2-stage GaN HEMT power amplifier using IPDs on HPSI SiC substrates," CS-MANTECH, May 2022.
  22. https://www.qorvo.com/applications/defense-aerospace/radar#ba0021
  23. https://www.wolfspeed.com/products/rf/c-band
  24. UMS, 2022_Selection_Guide, https://www.ums-rf.com/products/product-support/brochures/
  25. https://www.qorvo.com/applications/defense-aerospace/radar#ba0022
  26. https://www.wolfspeed.com/products/rf/x-band
  27. https://www.ommic.com/our-gan-products/
  28. https://www.qorvo.com/applications/defense-aerospace/radar#ba0023
  29. https://www.wolfspeed.com/products/rf/satellite-communications/
  30. J.C. Jeong et al., "AlGaN/GaN based ultra-wideband 15-W high-power amplifier with improved return loss," ETRI J., vol. 38, no. 5, 2016.
  31. D.H. Shin et al., "A decade-bandwidth distributed power amplifier MMIC using 0.25㎛ GaNHEMT technology," J. Electr. Eng. Sci., vol. 17, no. 4, 2017.
  32. 이복형 외, "0.25㎛ GaN HEMT 기술을 이용한 우수한 성능의 X-대역 전력 증폭기," 전기전자학회논문지, 제23권 제2호, 2019, pp. 425-430. https://doi.org/10.7471/IKEEE.2019.23.2.425
  33. L. Letailleur et al., "GaN/Si vs GaAs LNA linear and nonlinear caracterizations, new FOMs, in millimeter wave T/R chip context," in Proc. Int. Workshop Integrated Nonlinear Microw. Millim.-Wave Circuits (INMMIC), (Cardiff, United Kingdom), Apr. 2022.
  34. A . Fung et al., "Development of Gallium nitride monolithic microwave integrated circuits for Ka-band remote sensing," in Proc. IEEE Aerospace Conf., (Big Sky, MT, USA), June 2021.
  35. X. Tong et al., "An 18~56-GHz wideband GaN low-noise amplifier with 2.2~4.4-dB noise figure," IEEE Microw. Wirel. Compon. Lett., vol. 30, no. 12, 2020, pp. 1153-1156. https://doi.org/10.1109/LMWC.2020.3028311
  36. 성하욱 외, "유도성 소스 축퇴를 이용한 X-대역 GaN MMIC 저잡음 증폭기," 한국전자파학회논문지, 제33권 제5호, 2022, pp. 356-364.
  37. J.S. Seo et al., "High linearity Ka-band GaN HEMT low noise amplifier," in Proc. Int. Conf. Inform. Commun. Technol. Convergence (ICTC), (Jeju Island, Rep. Korea), Oct. 2021, pp. 383-385.
  38. B. Kim and V.Z.Q. Li, "39GHz GaN front end MMIC for 5G applications," in Proc. IEEE Compd. Semicond. Integrated Circuit Symp. (CSICS), (Miami, FL, USA), Oct. 2017.
  39. P. Schuh et al., "High performance GaN single-chip frontend for compact X-Band AESA systems," in Proc. Eur. Microw. Integrated Circuits Conf. (EuMIC), (Nuremberg, Germany), Oct. 2017.
  40. S. Masuda et al., "GaN single-chip transceiver frontend MMIC for X-band applications," in Proc. IEEE MTT-S Int. Symp. Dig., (Montreal, Canada), June 2012.
  41. P. Schuh et al., "GaN-based single-chip for next-generation X-band AESA systems," Int. J. Microw. Wirel. Technol., vol. 10, special issue. 5-6, 2018.
  42. D. Palombini et al., "Design of a 5W single chip front-end for C-Ku band T/R modules," in Proc. IEEE MTT-S Int. Microw. Symp. (IMS), (Philadelphia, PA, USA), June 2018.
  43. T. KIm et al., "High linear K-/Ka-band SPDT switch based on traveling-wave concept in a 150-nm GaN pHEMT process," IEEE Microw. Wirel. Compon. Lett., vol. 32, no. 8, 2022.
  44. 노윤섭 외, "C 대역 0.2㎛ GaN 공정을 이용한 30W급 SPDT 스위치 MMIC 개발," 대한전자공학회 추계학술대회, 2020.
  45. 노윤섭 외, "0.2㎛ GaN 공정을 이용한 광대역 SPDT 스위치 MMIC 개발," 한국전자파학회 동계종합학술대회, 제3권 제1호, 2021.
  46. 노윤섭 외 , "C 대역 GaN 저잡음증폭기 집적회로 설계," 한국전자파학회 하계종합학술대회, 제9권 제1호, 2021.
  47. 노윤섭 외, "0.2㎛ GaN 공정을 이용한 X 대역 20W급 고전력 SPDT MMIC 스위치 설계," 대한전자공학회 하계종합학술대회, 2021.
  48. 노윤섭 외 , "X 대역 GaN 저잡음증폭기 MMIC 연구," 한국전자파학회 하계종합학술대회, 2022.
  49. 노윤섭 외, "X 대역 25W급 GaN 전력증폭기 MMIC 개발," 통신정보합동학술대회, 2022.
  50. 노윤섭 외, "Ku대역 GaN 저잡음증폭기 집적회로 설계에 관한 연구," 한국통신학회 종합학술대회, 2021.
  51. 노윤섭 외, "0.2㎛ GaN HEMT 공정을 이용한 Ku대역 GaN SPDT 스위치 MMIC 개발," 한국전자파학회 동계종합학술대회, 제4권 제1호, 2022.