DOI QR코드

DOI QR Code

Recent Advances in 3D/4D Printed Electronics and Biomedical Applications

3D/4D 프린트된 전자기기 및 바이오메디컬 응용기술의 최근 발전

  • Hyojun Lee (School of Chemical Engineering, Chonnam National University) ;
  • Daehoon Han (School of Chemical Engineering, Chonnam National University)
  • 이효준 (전남대학교 화학공학부) ;
  • 한대훈 (전남대학교 화학공학부)
  • Received : 2023.12.05
  • Accepted : 2023.12.21
  • Published : 2023.12.30

Abstract

The ability of 3D/4D printing technology to create arbitrary 3D structures provides a greater degree of freedom in the design of printed structures. This capability has influenced the field of electronics and biomedical applications by enabling the trends of device miniaturization, customization, and personalization. Here, the current state-of-the-art knowledge of 3D printed electronics and biomedical applications with the unique and unusual properties enabled by 3D/4D printing is reviewed. Specifically, the review encompasses emerging areas involving recyclable and degradable electronics, metamaterial-based pressure sensor, fully printed portable photodetector, biocompatible and high-strength teeth, bioinspired microneedle, and transformable tube array for 3D cell culture and histology.

임의의 3D 구조물을 제작할 수 있는 3D/4D 프린팅 기술의 능력은 프린트된 구조물 디자인에 높은 자유도를 제공합니다. 이와 같은 능력은 전자기기 및 바이오 의료 응용분야에 장치 소형화, 맞춤화, 그리고 개인화 추세에 영향을 주고 있습니다. 본 Review 논문에서는, 3D/4D 프린팅 기술을 통해 만들어진, 독특하고 특이한 특성을 가진 3D 프린트된 전자기기 및 바이오 의료 응용 분야의 최신 정보를 살펴봅니다. 구체적으로, 재활용 및 분해 가능한 전자기기, 메타물질 기반 압력 센서, fully 프린트된 휴대용 광검출기, 생체 적합 및 고강도를 가진 치아, 자연모사 마이크로니들, 그리고 3D 세포 배양 및 히스톨로지를 위한 형태 변형 가능한 튜브 어레이와 같은 신흥 영역들을 소개합니다.

Keywords

References

  1. I. Gibson, D. Rosen, B. Stucker, M. Khorasani, "Additive manufacturing technologies", Springer, (2021).
  2. M. Srivastava and S. Rathee, "Additive manufacturing: Recent trends, applications and future outlooks", Prog. Addit. Manuf., 7(2), 261-287 (2022). https://doi.org/10.1007/s40964-021-00229-8
  3. S. Tibbits, "4d printing: Multi-material shape change", Archit. Des., 84(1), 116-121 (2014).
  4. K. D. Ahn, "Fabrication of fluorescent oxygen sensor probe module based on planner lightwave circuits using uv imprint lithography", J. Microelectron. Packag. Soc., 25(3), 37-41 (2018).
  5. Y.-S. Park and S.-K. Kang, "3d printed electronics research trend", J. Microelectron. Packag. Soc., 28(2), 1-12 (2021).
  6. S. H. Kim, Y. W. Kwon and S. W. Hong, "Recent progress in micro in-mold process technologies and their applications", J. Microelectron. Packag. Soc., 30(2), 1-12 (2023).
  7. H. W. Tan, Y. Y. C. Choong, C. N. Kuo, H. Y. Low and C. K. Chua, "3D printed electronics: Processes, materials and future trends", Prog. Mater. Sci., 127, 100945 (2022).
  8. Y. Guo, S. Chen, L. Sun, L. Yang, L. Zhang, J. Lou and Z. You, "Degradable and fully recyclable dynamic thermoset elastomer for 3d-printed wearable electronics", Adv. Funct. Mater., 31(9), 2009799 (2021).
  9. H.-G. Kim, S. Hajra, H. Lee, N. Kim and H. J. Kim, "Additively manufactured mechanical metamaterial-based pressure sensor with tunable sensing properties for stance and motion analysis", Adv. Eng. Mater., 25(14), 2201499 (2023).
  10. Ouyang, R. Su, D. W. H. Ng, G. Han, D. R. Pearson and M. C. McAlpine, "3D printed skin-interfaced uv-visible hybrid photodetectors", Adv. Sci., 9(25), 2201275 (2022).
  11. B. H. Robinson, "E-waste: An assessment of global production and environmental impacts", Sci. Total Environ., 408(2), 183-191 (2009). https://doi.org/10.1016/j.scitotenv.2009.09.044
  12. J. M. Moon and S.-K. Kang, "Transient electronics and biodegradable encapsulation technologies", J. Microelectron. Packag. Soc., 28(2), 13-28 (2021).
  13. V. R. Feig, H. Tran and Z. Bao, "Biodegradable polymeric materials in degradable electronic devices", ACS Central Sci., 4(3), 337-348 (2018). https://doi.org/10.1021/acscentsci.7b00595
  14. J. U. Surjadi, L. G ao, H. Du, X. Li, X. Xiong, N. X. Fang and Y. Lu, "Mechanical metamaterials and their engineering applications", Adv. Eng. Mater., 21(3), 1800864 (2019).
  15. Y. Bozkurt and E. Karayel, "3D printing technology; methods, biomedical applications, future opportunities and trends", J. Mater. Res. Technol., 14, 1430-1450 (2021). https://doi.org/10.1016/j.jmrt.2021.07.050
  16. M. Zhao, D. Yang, S. Fan, X. Yao, J. Wang, M. Zhu and Y. Zhang, "3d-printed strong dental crown with multi-scale ordered architecture, high-precision, and bioactivity", Adv. Sci., 9(5), 2104001 (2022).
  17. D. Han, R. S. Morde, S. Mariani, A. A. La Mattina, E. Vignali, C. Yang, G. Barillaro and H. Lee, "4d printing of a bioinspired microneedle array with backward-facing barbs for enhanced tissue adhesion", Adv. Funct. Mater., 30(11), 1909197 (2020).
  18. C. Yang, J. Luo, M. Polunas, N. Bosnjak, S. T. D. Chueng, M. Chadwick, H. E. Sabaawy, S. A. Chester, K. B. Lee and H. Lee, "4d-printed transformable tube array for high-throughput 3d cell culture and histology", Adv. Mater., 32(40), 2004285 (2020).
  19. C. Shao, B. Jin, Z. Mu, H. Lu, Y. Zhao, Z. Wu, L. Yan, Z. Zhang, Y. Zhou and H. Pan, "Repair of tooth enamel by a biomimetic mineralization frontier ensuring epitaxial growth", Sci. Adv., 5(8), aaw9569 (2019).
  20. H.-P. Yu, Y.-J. Zhu and B.-Q. Lu, "Dental enamel-mimetic large-sized multi-scale ordered architecture built by a well controlled bottom-up strategy", Chem. Eng. J., 360, 1633-1645 (2019). https://doi.org/10.1016/j.cej.2018.11.025
  21. S. Baik, H. J. Lee, D. W. Kim, J. W. Kim, Y. Lee and C. Pang, "Bioinspired adhesive architectures: From skin patch to integrated bioelectronics", Adv. Mater., 31(34), 1803309 (2019).