DOI QR코드

DOI QR Code

A Study on the Phase Change of Cubic Bi1.5Zn1.0Nb1.5O7(c-BZN) and the Corresponding Change in Dielectric Properties According to the Addition of Li2CO3

Li2CO3 첨가에 따른 입방정 Bi1.5Zn1.0Nb1.5O7(c-BZN)의 상 변화 및 그에 따른 유전특성 변화 연구

  • Yuseon Lee (Department of Electronic Materials, Devices and Equipment Engineering, Soonchunhyang University) ;
  • Yunseok Kim (Department of Electronic Materials, Devices and Equipment Engineering, Soonchunhyang University) ;
  • Seulwon Choi (Department of Electronic Materials, Devices and Equipment Engineering, Soonchunhyang University) ;
  • Seongmin Han (Department of Display and Materials Engineering, Soonchunhyang University) ;
  • Kyoungho Lee (Department of Electronic Materials, Devices and Equipment Engineering, Soonchunhyang University)
  • 이유선 (순천향대학교 전자재료소자장비융합공학과) ;
  • 김윤석 (순천향대학교 전자재료소자장비융합공학과) ;
  • 최슬원 (순천향대학교 전자재료소자장비융합공학과) ;
  • 한성민 (순천향대학교 디스플레이신소재공학과) ;
  • 이경호 (순천향대학교 전자재료소자장비융합공학과)
  • Received : 2023.12.18
  • Accepted : 2023.12.30
  • Published : 2023.12.30

Abstract

A novel low-temperature co-fired ceramic (LTCC) dielectric, composed of (1-4x)Bi1.5Zn1.0Nb1.5O7-3xBi2Zn2/3Nb4/3O7-2xLiZnNbO4 (x=0.03-0.21), was synthesized through reactive liquid phase sintering of Bi1.5Zn1.0Nb1.5O7-xLi2CO3 ceramic at temperatures ranging from 850℃ to 920℃ for 4 hours. During sintering, Li2CO3 reacted with Bi1.5Zn1.0Nb1.5O7, resulting in the formation of Bi2Zn2/3Nb4/3O7, and LiZnNbO4. The resulting sintered body exhibited a relative sintering density exceeding 96% of the theoretical density. By altering the initial Li2CO3 content (x) and consequently modulating the volume fraction of Bi1.5Zn1.0Nb1.5O7, Bi2Zn2/3Nb4/3O7, and LiZnNbO4 in the final sintered body, a sample with high dielectric constant (εr), low dielectric loss (tan δ), and the temperature coefficient of dielectric constant (TCε) characterized by NP0 specification (TCε ≤ ±30 ppm/℃) was achieved. As the Li2CO3 content increased from x=0.03 mol to x=0.15 mol, the volume fraction of Bi2Zn2/3Nb4/3O7 and LiZnNbO4 in the composite increased, while the volume fraction of Bi1.5Zn1.0Nb1.5O7 decreased. Consequently, the dielectric constant (εr) of the composite materials varied from 148.38 to 126.99, the dielectric loss (tan δ) shifted from 5.29×10-4 to 3.31×10-4, and the temperature coefficient of dielectric constant (TCε) transitioned from -340.35 ppm/℃ to 299.67 ppm/℃. A dielectric exhibiting NP0 characteristics was achieved at x=0.09 for Li2CO3, with a dielectric constant (εr) of 143.06, a dielectric loss (tan δ) value of 4.31×10-4, and a temperature coefficient of dielectric constant (TCε) value of -9.98 ppm/℃. Chemical compatibility experiment with Ag electrode revealed that the developed composite material exhibited no reactivity with the Ag electrode during the co-firing process.

(1-4x)Bi1.5Zn1.0Nb1.5O7-3xBi2Zn2/3Nb4/3O7-2xLiZnNbO4(x=0.03-0.21) 조성의 새로운 저온 동시 소성 세라믹(LTCC) 유전체는 Bi1.5Zn1.0Nb1.5O7-xLi2CO3(x=0.03-0.21) 혼합물을 850℃~920℃에서 4 시간 반응성 액상소결(reactive liquid phase sintering)을 하여 제조하였다. 소결이 진행되는 동안 Li2CO3는 Bi1.5Zn1.0Nb1.5O7과 반응하여 Bi2Zn2/3Nb4/3O7과 LiZnNbO4를 생성하였고 얻어진 소결체의 상대 소결밀도는 이론 밀도의 96% 이상이었다. 초기 Li2CO3 함량(x)을 조절하여 최종 소결체내에 존재하는 Bi1.5Zn1.0Nb1.5O7, Bi2Zn2/3Nb4/3O7 및 LiZnNbO4 상의 상대적인 함량을 제어함으로써 높은 유전율(εr), 낮은 유전손실(tan δ) 및 NP0 특성(TCε ≤ ±30 ppm/℃)의 유전율 온도계수(TCε)를 갖는 유전체를 개발할 수 있었다. Li2CO3의 첨가가 x=0.03 mol에서 x=0.15 mol로 증가함에 따라 얻어진 복합체 내의 Bi2Zn2/3Nb4/3O7와 LiZnNbO4의 부피 분율은 증가하였고, Bi1.5Zn1.0Nb1.5O7의 부피 분율은 감소하였다. 그 결과 복합체의 유전율(εr)은 148.38에서 126.99로 유전손실(tan δ)은 5.29×10-4에서 3.31×10-4로 그리고 유전율 온도계수(TCε)는 -340.35 ppm/℃에서 299.67 ppm/℃로 변화되었다. NP0 특성을 갖는 유전체는 Li2CO3의 함량이 x=0.09일 때 얻을 수 있었고, 이 때의 유전율(εr)은 143.06, 유전손실(tan δ)값은 4.31×10-4, 그리고 유전율 온도계수(TCε)값은 -9.98 ppm/℃ 이었다. Ag전극과의 화학적 호환성 실험은 개발된 복합 재료는 Ag 전극과 동시 소성 과정에서 전극과 반응이 없음을 보여주었다.

Keywords

Acknowledgement

본 과제(결과물)는 2023년도 교육부의 재원으로 한국연구재단의 지원을 받아 수행된 지자체-대학 협력기반 지역혁신 사업의 결과입니다.(2021RIS-004)

References

  1. H. L. Pan, Y. X. Mao, L. Cheng, and H. T. Wu, "New Li3Ni2NbO6 microwave dielectric ceramics with the orthorhombic structure for LTCC applications", J. Alloys Compd., 723, 667-674 (2017). https://doi.org/10.1016/j.jallcom.2017.06.285
  2. M. Ma, H. Khan, W. Shan, Y. Wang, J. Z. Ou, Z. Liu, and K. K. Y. Li, "A novel wireless gas sensor based on LTCC technology", Sens. Actuators B., 239, 711-717 (2017). https://doi.org/10.1016/j.snb.2016.08.073
  3. R. A. Potyrailo, C. Surman, N. Nagraj, and A. Burns, "Materials and transducers toward selective wireless gas sensing", Chem. Rev., 111, 7315 (2011).
  4. D. Kim and K. Lee, "Fabrication of a novel ultra low temperature co-fired ceramic (ULTCC) using BaV2O6 and BaWO4", J. Microelectron. Packag. Soc., 28(4), 11-18 (2021).
  5. J. Jung, D. Seo, and J. Ryu, "A study on 8×4 dual-polarized array antenna for x-band using LTCC-based ME dipole antenna structure", J. Microelectron. Packag. Soc., 28(3), 25-32 (2021).
  6. J. Lee, J. Ryu, S. Choi, and J. Lee, "Implementation of passive elements applied LTCC substrate for 24-GHz frequency band", J. Microelectron. Packag. Soc., 28(2), 81-88 (2021).
  7. C. Khaw, K. Tan, and C. Lee, "High temperature dielectric properties of cubic bismuth zinc tantalite", Ceram. Int., 35, 1473-1480 (2009). https://doi.org/10.1016/j.ceramint.2008.08.006
  8. Q. Guo, L. Li, S. Yu, Z. Sun, H. Zheng, J. Li, and W. Luo, "Temperature-stable dielectrics based on Cu-doped Bi2Mg2/3Nb4/3O7 pyrochlore ceramics for LTCC", Ceram. Int., 44, 333-338 (2018). https://doi.org/10.1016/j.ceramint.2017.09.177
  9. S. Gharbi, R. Dhahri, M. Rasheed, E. Dhahri, R. Barille, M. Rguiti, A. Tozri, and M. R. Berber, "Effect of Bi substitution on nanostructural, morphologic, and electrical behavior of nanocrystalline La1-xBixNi0.5Ti0.5O3 (x = 0 and x = 0.2) for the electrical devices", Mater. Sci. Eng. B, 270, 115191 (2021).
  10. F. Dkhilalli, S. Megdiche, K. Guidara, M. Rasheed, R. Barille, and M. Megdiche, "AC conductivity evolution in bulk and grain boundary response of sodium tungstate Na2BiWO4", Ionics, 24, 169-180 (2018). https://doi.org/10.1007/s11581-017-2193-8
  11. A. Mergen, H. Zorlu, M. Ozdemir, and M. Yumak, "Dielectric properties of Sm, Nd and Fe doped Bi1.5Zn0.92Nb1.5O6.92 pyrochlores", Ceram. Int., 37, 37-42 (2011). https://doi.org/10.1016/j.ceramint.2010.08.010
  12. A. F. Qasrawi, B. H. Kmail, and A. Mergen, "Synthesis and characterization of Bi1.5Zn0.92Nb1.5-xSnxO6.92-x/2 pyrochlore ceramics", Ceram. Int., 38, 4181-4187 (2012). https://doi.org/10.1016/j.ceramint.2012.01.079
  13. H. Du and X. Yao, "Effects of Sr substitution on dielectric characteristics in Bi1.5ZnNb1.5O7 ceramics", Mater. Sci. Eng. B, 99, 437-440 (2003). https://doi.org/10.1016/S0921-5107(02)00447-6
  14. S. L. Swartz and T. R. Shrout, "Ceramic composition for BZN dielectric resonator", U.S. Patent No. 9449652 (1995).
  15. W. Ren, S. Trolier-McKinstry, C. A. Randall, and T. R. Shrout, "Bismuth zinc niobate pyrochlore dielectric thin films for capacitive applications", J. Appl. Phys., 89, 767-774 (2001). https://doi.org/10.1063/1.1328408
  16. D. P. C ann, C . A. Randall, and T. R. Shrout, "Investigation of the dielectric properties of bismuth pyrochlores", Solid State Commun., 100, 529-534 (1996). https://doi.org/10.1016/0038-1098(96)00012-9
  17. X. L. Wang, H. Wang, and X. Yao, "Structure, phase transformations and dielectric properties of pyrochlores containing bismuth", J. Am. Ceram. Soc., 80(10), 2745-2748 (1997). https://doi.org/10.1111/j.1151-2916.1997.tb03189.x
  18. M. Valant and P. K. Davies, "Crystal chemistry and dielectric properties of chemically substituted (Bi1.5Zn1.0Nb1.5)O7 and Bi2(Zn2/3Nb4/3)O7 pyrochlores", J. Am. Ceram. Soc., 83(1), 147-153 (2000). https://doi.org/10.1111/j.1151-2916.2000.tb01163.x
  19. R. L. Thayer, "Bismuth zinc niobate films for dielectric applications", M. S. Thesis, pp.221-223, The Pennsylvania State University, U.S.A (2002)
  20. L. D. Vuong, "Effect of Li2CO3 addition on the sintering behavior and physical properties of PZT-PZN-Pmnn ceramics", Int. J. Mater. Sci. Appl., 2(3), 89-93 (2013). https://doi.org/10.11648/j.ijmsa.20130203.13
  21. B. Nan, A. Matousek, P. Tofel, V. Bijalwan, T. Button, L. Li, P. Fan, and H. Zhang, "Effect of lithium carbonate on the sintering, microstructure, and functional properties of sol-gel-derived Ba0.85Ca0.15Zr0.1Ti0.9O3 piezoceramics", J. Mater. Res., 36, 1105-1113 (2021). https://doi.org/10.1557/s43578-020-00065-6
  22. F. Roulland, R. Terra, G. Allainmat, M. Pollet, and S. Marinel, "Lowering of BaB'1/3B''2/3O3 complex perovskite sintering temperature by lithium salt additions", J. Euro. Ceram. Soc., 24, 1019-1023 (2004). https://doi.org/10.1016/S0955-2219(03)00553-3
  23. A. E. Paladino, "Temperature-compensated MgTi2O5-TiO2 dielectrics", J. Am. Ceram. Soc., 54(3), 168-169 (1971). https://doi.org/10.1111/j.1151-2916.1971.tb12247.x
  24. W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, "Introduction to ceramics", 2nd edition, Wiley, New York, pp. 947 (1976).
  25. F. Zhao, Z. Yue, Y. Lin, Z. Gui, and L. Li, ''Phase relation and microwave dielectric properties of xCaTiO3-(1-x)TiO2-3ZnTiO3 multiphase ceramics'', Ceram. Int., 33, 895-900 (2007). https://doi.org/10.1016/j.ceramint.2006.01.015
  26. H. Wang and X. Yao, "Bismuth-based pyrochlore dielectric ceramics for microwave applications" in Handbook of Advanced Dielectric, Piezoelectric and Ferroelectric Materials, Z.G. Ye, Eds., pp.503-538, Woodhead Publishing Limited, Cambridge (2008).
  27. B. Zhang, L. Li, and W. Luo, "Chemical substitution in spinel structured LiZnNbO4 and its effects on the crystal structure and microwave performance", J. Alloys Compd., 771, 15-24 (2019). https://doi.org/10.1016/j.jallcom.2018.08.241