DOI QR코드

DOI QR Code

Tin Oxide-modulated to Cu(OH)2 Nanowires for Efficient Electrochemical Reduction of CO2 to HCOOH and CO

SnO2/Cu(OH)2 Nanowires 전극을 이용한 전기화학적 이산화탄소 환원 특성

  • Chaewon Seong (Department of Chemicals & Engineering, Chonnam National University) ;
  • Hyojung Bae (Photonics Energy Materials Research Center, Korea Photonics Technology Institute (KOPTI)) ;
  • Sea Cho (Department of Chemicals & Engineering, Chonnam National University) ;
  • Jiwon Heo (Department of Chemicals & Engineering, Chonnam National University) ;
  • Eun Mi Han (Department of Chemicals & Engineering, Chonnam National University) ;
  • Jun-Seok Ha (Department of Chemicals & Engineering, Chonnam National University)
  • 성채원 (전남대학교 화학공학부) ;
  • 배효정 (한국광기술원 광에너지소재연구센터) ;
  • 조세아 (전남대학교 화학공학부) ;
  • 허지원 (전남대학교 화학공학부) ;
  • 한은미 (전남대학교 화학공학부) ;
  • 하준석 (전남대학교 화학공학부)
  • Received : 2023.12.22
  • Accepted : 2023.12.30
  • Published : 2023.12.30

Abstract

Electrochemical (EC) CO2 reduction is a promising method to convert CO2 into valuable hydrocarbon fuels and chemicals ecofriendly. Here, we report on a facile method to synthesize surface-controlled SnO2/Cu(OH)2 nanowires (NWs) and its EC reduction of CO2 to HCOOH and CO. The SnO2/Cu(OH)2 NWs (-16 mA/cm2) showed superior electrochemical performance compared to Cu(OH)2 NWs (-6 mA/cm2) at -1.0 V (vs. RHE). SnO2/Cu(OH)2 NWs showed the maximum Faradaic efficiency for conversion to HCOOH (58.01 %) and CO (29.72 %). The optimized catalyst exhibits a high C1 Faradaic efficiency stable electrolysis for 2 h in a KHCO3 electrolyte. This study facilitates the potential for the EC reduction of CO2 to chemical fuels.

전기화학적 이산화탄소 (CO2) 환원은 CO2를 고부가가치의 탄소화합물로 전환하는 매우 유망한 방법이다. 본 논문에서는 양극 산화법과 원자층 증착법을 이용하여 전기화학적 CO2 환원용 SnO2/Cu(OH)2 나노와이어 (NWs) 전극을 합성하는 손쉬운 방법과 그 특성에 대해 보고한다. 제작된 SnO2/Cu(OH)2 NWs (-16 mA/cm2)는 -1.0 V (vs. RHE)에서 Cu(OH)2 NWs (-6 mA/cm2) 대비 더 우수한 전기화학적 성능을 보였다. CO2 환원 성능을 확인해 보았을 때도 일산화탄소(CO), 포름산염 (HCOOH) 생성물에 대해 각각 29.72 %, 58.01 %의 높은 페러데이 효율 (FE)을 보였다. 본 연구는 CO2 배출로 인한 기후 변화에 대응하는 경제적이며 지속 가능한 방법을 제공할 뿐만 아니라, 전기화학적 CO2 환원용 전극 개발에 크게 기여할 것으로 예상된다.

Keywords

Acknowledgement

본 과제(결과물)는 2023년도 교육부의 재원으로 한국연구재단의 지원을 받아 수행된 지자체-대학 협력기반 지역혁신 사업(2021RIS-002)과 교육과학기술부의 재원으로 한국연구재단의 대학중점연구소 지원사업으로 수행된 연구임(2018R1A6A1A03024334).

References

  1. M. Rafiq, X. Hu, Z. Ye, A. Qayum, H. Xia, L. Hu, F. Lu, and P. K. Chu, "Recent advances in structural engineering of 2D hexagonal boron nitride electrocatalysts", Nano Energy, 106661 (2022). 
  2. X. Liu and C. Wang, "In situ wet etching of mos2 @dwo3 heterostructure as ultra-stable highly active electrocatalyst for hydrogen evolution reaction", Catalysts, 10(9), 1-12 (2020).  https://doi.org/10.3390/catal10090977
  3. G. Wang, J. Chen, Y. Ding, P. Cai, L. Yi, Y. Li, C. Tu, Y. Hou, Z. Wen, and L. Dai, "Electrocatalysis for CO2 conversion: From fundamentals to value-added products", Chem. Soc. Rev., 50(8), 4993-5061 (2021).  https://doi.org/10.1039/D0CS00071J
  4. A. Engelbrecht, M. Hammerle, R. Moos, M. Fleischer, and G. Schmid, "Improvement of the selectivity of the electrochemical conversion of CO2 to hydrocarbons using cupreous electrodes with in-situ oxidation by oxygen", Electrochim. Acta, 224, 642-648 (2017).  https://doi.org/10.1016/j.electacta.2016.12.059
  5. D. Kim, C. S. Kley, Y. Li, and P. Yang, "Copper nanoparticle ensembles for selective electroreduction of CO2 to C2-C3 products", Proc. Natl. Acad. Sci. U. S. A., 114(40), 10560-10565 (2017).  https://doi.org/10.1073/pnas.1711493114
  6. Y. Pang, T. Burdyny, C. T. Dinh, M. G. Kibria, J. Z. Fan, M. Liu, E. H. Sargent, and D. Sinton, "Joint tuning of nanostructured Cu-oxide morphology and local electrolyte programs high-rate CO2 reduction to C2H4", Green Chem., 19(17), 4023-4030 (2017).  https://doi.org/10.1039/C7GC01677H
  7. X. Wang, H. Chen, R. Jiang, X. Hong, J. Peng, W. Chen, J. Jiang, J. Li, D. Huang, H. Dai, W. Wang, J. Lu, Y. Zhao, and W. Wu, "Interleukin-17 activates and synergizes with the notch signaling pathway in the progression of pancreatic ductal adenocarcinoma", Cancer Lett., 508, 1-12 (2021).  https://doi.org/10.1016/j.canlet.2021.03.003
  8. F. Scholten, I. Sinev, M. Bernal, and B. R. Cuenya, "Plasma-Modified Dendritic Cu Catalyst for CO2 Electroreduction", ACS Catal., 9, 5496-5502 (2019).  https://doi.org/10.1021/acscatal.9b00483
  9. D. Ren, Y. Deng, A. D. Handoko, C. S. Chen, S. Malkhandi, and B. S. Yeo, "Selective Electrochemical Reduction of Carbon Dioxide to Ethylene and Ethanol on Copper(I) oxide catalysts", ACS Catal., 5(5), 2814-2821 (2015).  https://doi.org/10.1021/cs502128q
  10. C. Chen, X. Sun, X. Yan, Y. Wu, M. Liu, S. Liu, Z. Zhao, and B. Han, "A strategy to control the grain boundary density and Cu+/Cu0 ratio of Cu-based catalysts for efficient electroreduction of CO2 to C2 products", Green Chem., 22(5), 1572-1576 (2020).  https://doi.org/10.1039/D0GC00247J
  11. M. Rohini, S. Kanase, R. S. Kanase, and S. H. Kang, "Effect of KHCO3 Concentration Using CuO Nanowire for Electrochemical CO2 Reduction Reaction", Packag. Soc., 27(4), 11-17 (2020). 
  12. J. Li, M. Zhu, and Y. F. Han, "Elucidating the structure evolution and reaction mechanism of the Cu-In bimetallic catalysts during CO2RR", J. Catal., 415, 165-173 (2022).  https://doi.org/10.1016/j.jcat.2022.09.031
  13. B. Wei, Y. Xiong, Z. Zhang, J. Hao, L. Li, and W. Shi, "Efficient electrocatalytic reduction of CO2 to HCOOH by bimetallic In-Cu nanoparticles with controlled growth facet", Appl. Catal. B Environ., 283, 119646 (2021). 
  14. X. Su, Y. Sun, L. Jin, L. Zhang, Y. Yang, P. Kerns, B. Liu, S. Li, and J. He, "Hierarchically porous Cu/Zn bimetallic catalysts for highly selective CO2 electroreduction to liquid C2 products", Appl. Catal. B Environ., 269, 118800 (2020). 
  15. X. Wang, J. Lv, J. Zhang, X. L. Wang, C. Xue, G. Bian, D. Li, Y. Wang, and T. Wu, "Hierarchical heterostructure of SnO2 confined on CuS nanosheets for efficient electrocatalytic CO2 reduction", Nanoscale, 12(2), 772-784 (2020).  https://doi.org/10.1039/C9NR08726E
  16. T. Kim, H.-H. Park, H. Choi, Y. Kim, and J. Lee, "Effect of Graphene Oxide Addition to Tin Oxide Aerogel for Photocatalytic Rhodamine B Degradation", J. Microelectron. Packag. Soc., 28(1), 61 (2021). 
  17. S. Cho and S. E. Kim, "Effect of Si grinding on electrical properties of sputtered tin oxide thin films", J. Microelectron. Packag. Soc., 25(2), 49-53 (2018). 
  18. Y. Zhang, P. Zhu, G. Li, T. Zhao, X. Fu, R. Sun, F. Zhou, and C. P. Wong, "Facile preparation of monodisperse, impurity-free, and antioxidation copper nanoparticles on a large scale for application in conductive ink", ACS Appl. Mater. Interfaces, 6(1), 560-567 (2014).  https://doi.org/10.1021/am404620y
  19. Y. Lu, X. Yuan, C. Jia, B. Lei, H. Zhang, Z. Zhao, S. Zhu, Q. Zhao, and W. Cai, "Self-Assembled Bifunctional Copper Hydroxide/Gold-Ordered Nanoarray Composites for Fast, Sensitive, and Recyclable SERS Detection of Hazardous Benzene Vapors", Nanomaterials, 13(13), (2023). 
  20. K. Wongsaprom, A. Winyayong, and S. Maensiri, "Synthesis and room-temperature ferromagnetism in flower-like SnO2 nanostructures", J. Phys. Conf. Ser., 1144(1), 012042 (2018). 
  21. D. Zhu, L. Wang, W. Yu, and H. Xie, "Intriguingly high thermal conductivity increment for CuO nanowires contained nanofluids with low viscosity", Sci. Rep., 8(1), 1-12 (2018).  https://doi.org/10.1038/s41598-018-23174-z
  22. B. Jia, L. Li, C. Xue, J. Kang, L. min Liu, T. Guo, Z. Wang, Q. Huang, and S. Guo, "Restraining Interfacial Cu2+ by using Amorphous SnO2 as Sacrificial Protection Boosts CO2 Electroreduction", Adv. Mater., 35(40), 1-8 (2023).  https://doi.org/10.1002/adma.202305587
  23. Y. Yue, X. Zou, Y. Shi, J. Cai, Y. Xiang, Z. Li, and S. Lin, "A low crystallinity CuO-SnO2/C catalyst for efficient electrocatalytic reduction of CO2", J. Electroanal. Chem., 928, 117089 (2023). 
  24. S. N. Zhang, M. Li, B. Hua, N. Duan, S. Ding, S. Bergens, K. Shankar, and J. L. Luo, "A Rational Design of Cu2O-SnO2 Core-Shell Catalyst for Highly Selective CO2-to-CO Conversion", ChemCatChem, 11(16), 4147-4153 (2019).  https://doi.org/10.1002/cctc.201900395
  25. M. Ma, K. Djanashvili, and W. A. Smith, "Selective electrochemical reduction of CO2 to CO on CuO-derived Cu nanowires", Phys. Chem. Chem. Phys., 17(32), 20861-20867 (2015). https://doi.org/10.1039/C5CP03559G