DOI QR코드

DOI QR Code

유연소자용 기판과의 접착 특성에 따른 구리 배선의 압축 피로 거동 및 신뢰성

Reliability of Cu Interconnect under Compressive Fatigue Deformation Varying Interfacial Adhesion Treatment

  • 김민주 (금오공과대학교 신소재공학부) ;
  • 현준혁 (금오공과대학교 신소재공학부) ;
  • 허정아 (금오공과대학교 신소재공학부) ;
  • 이소연 (금오공과대학교 신소재공학부)
  • Min Ju Kim (Department of Materials Science and Engineering, Kumoh National Institute of Technology) ;
  • Jeong A Heo (Department of Materials Science and Engineering, Kumoh National Institute of Technology) ;
  • Jun Hyeok Hyun (Department of Materials Science and Engineering, Kumoh National Institute of Technology) ;
  • So-Yeon Lee (Department of Materials Science and Engineering, Kumoh National Institute of Technology)
  • 투고 : 2023.12.22
  • 심사 : 2023.12.30
  • 발행 : 2023.12.30

초록

차세대 전자기기는 기계적인 굽힘이나 말림(rolling) 변형이 반복적으로 가능한 형태로 발전하고 있다. 이에 따라 전자기기 내부 소자들 간의 연결을 위한 금속 배선의 기계적인 신뢰성 확보가 필수적이며, 특히, 실제 사용 환경을 모사한 압축 환경에서의 굽힘 피로 변형에 대한 신뢰성 평가가 중요하다. 본 연구에서는 구리(Cu)와 폴리이미드(Polyimide, PI) 기판 간의 접착력을 향상시키고, 굽힘 피로 변형 환경에서 구리 배선의 신뢰성을 높이기 위한 방법을 탐구했다. 접착력 향상을 위해 폴리이미드 기판에 산소 플라즈마 처리와 크롬(Cr) 접착층 도입이라는 두 가지 방법을 적용하고, 이들이 압축 상황에서의 피로 거동에 미치는 영향을 비교 분석했다. 연구 결과, 접착력 향상 방법에 따라 압축 피로 거동에서 차이가 발생하는 것을 확인했다. 특히, 크롬 접착층을 도입한 경우 1.5% 변형률에서는 크랙 생성이 주된 변형 메커니즘이며, 피로 특성이 취약한 결과를 얻었으나, 2.0%의 높은 변형률에서는 플라즈마 처리법에 비해 박리가 발생하지 않아 가장 개선된 피로 특성을 나타냈다. 본 연구의 결과는 유연 전자기기의 사용 환경에 적합한 피로 저항 개선법을 제시하고, 크랙 발생 정도를 포함한 전자기기의 신뢰성 향상에 중요한 정보를 제공할 수 있을 것으로 기대한다.

Electronic devices have been evolved to be mechanically flexible that can be endured repetitive deformation. This evolution emphasizes the importance of long-term reliability in metal wiring connecting electronic components, especially under bending fatigue in compressed environments. This study investigated methods to enhance adhesion between copper (Cu) and polyimide (PI) substrates, aiming to improve the reliability of copper wiring under such conditions. We applied oxygen plasma treatment and introduced a chromium (Cr) adhesion layer to the polyimide substrate. Our findings revealed that these adhesion enhancement methods significantly affect compression fatigue behavior. Notably, the chromium adhesion layer, while showing weaker fatigue characteristics at 1.5% strain, demonstrated superior performance at 2.0% strain with no delamination, outperforming other methods. These results offer valuable insights for improving the reliability of flexible electronic devices, including reducing crack occurrence and enhancing fatigue resistance in their typical usage environments.

키워드

과제정보

이 연구는 금오공과대학교 대학 학술연구비로 지원되었음(2021)

참고문헌

  1. D. Corzo, T.-B. Guillermo, and B. Derya, "Flexible electronics: status, challenges and opportunities", Frontiers in Electronics, 1, 594003 (2020). 
  2. J. Chen and C. T. Liu, "Technology advances in flexible displays and substrates", IEEE Access, 1, 150 (2013). 
  3. J. G. Seol, D. J. Lee, T. W. Kim, and B.-J. Kim, "Reliability study on rolling deformation of ITO thin film on flexible substrate", J. Microelectron. Packag. Soc., 25(1), 29 (2018). 
  4. J. G. Seol and B.-J. Kim, "Electrical Reliability of ITO Film on Flexible Substrate During bending Deformations and Bending Fatigue", J. Microelectron. Packag. Soc., 24(4), 47 (2017). 
  5. W. Y. Kwon and B.-J. Kim, "Mechanical and Electrical Failure of ITO Film with Different Shape during Twisting Deformation", J. Microelectron. Packag. Soc., 24(4), 53 (2017). 
  6. Y.-W. Kown and B.-J. Kim, "Mechanical Fatigue Lifetime of Metal Electrode for Flexible Electronics under High Temperature and High Humidity Condition", J. Microelectron. Packag. Soc., 27(2), 45 (2020). 
  7. M. I. Bessonov, M. M. Koton, V. V. Kudryavtsev, and L. A. Laius, "Polyimide: Thermally Stable Polymer", Consultants Bureau, New York (1987). 
  8. W. L. Qu and T. M. Ko, "Studies of dielectric characteristics and surface energies of spin-coated polyimide films", J. Appl. Polym. Sci., 82, 1642 (2001). 
  9. M. K. Ghosh and K. L. Mittal, "Polyimide: Synthesis, Characterization and Applications", Springer US (1984). 
  10. J. A. Kreuz and J. R. Edman, "Polyimide Films", Adv. Mater., 10, 1229 (1998). 
  11. S. Kubota, T. Moriwaki, T. Ando, and A. Fukami, "Preparation of positive photoreactive polyimides and their characterization", J. Appl. Polym. Sci., 33, 1763 (1987). 
  12. J. Jang, J. Lee, and B.-H. Ahn, "A Study on the Adhesion Properties of BTDA-APAB Polyimide on Aluminum Surfaces", Polym. Korea, 21, 582 (1997). 
  13. U. J. Park, J. Y. Park, Y. S. Kim, J. H. Ryu, and J. C. Won, "Effect of Functionalized Binary Silane Coupling Agents by Hydrolysis Reaction Rate on the Adhesion Properties of 2-Layer Flexible Copper Clad Laminate", Polym. Korea, 35, 302 (2011). 
  14. J. Yu, M. Ree, T. J. Shin, X. Wang, W. Cai, D. Zhou, and K. W. Lee, "Miscibility of polyimide with polymeric primer and its influence on adhesion of polyimide to the primed copper metal: Effect of precursor origin", J. Polym. Sci., Part B: Polym. Phys., 37, 2806 (1999). 
  15. Q.-H. Lu, M. Li, J. Yin, Z.-K. Zhu, and Z.-G. Wang, "Polyimide surface modification by pulsed ultraviolet laser irradiation with low fluence", J. Appl. Polym. Sci., 82, 2739 (2001). 
  16. H. S. Patel and V. C. Patel, "Polyimides containing s-triazine ring", Eur. Polym. J., 37, 2263 (2001). 
  17. S. H. Kim, S. H. Cho, N.-E. Lee, H. M. Kim, Y. W. Nam, and Y.-H. Kim, "Adhesion properties of Cu/Cr films on polyimide substrate treated by dielectric barrier discharge plasma", Surf. Coat. Technol., 193(1-3), 101 (2005). 
  18. M. Strobel, C. S. Lyons, and K. L. Mittal, "Plasma Surface Modification of Polymers: Relevance to Adhesion", VSP, Utrecht, The Netherlands (1994). 
  19. T. Miyamura and J. Koike, "The effects of Cr oxidation and polyimide degradation on interface adhesion strength in Cu/Cr/polyimide flexible films", Mater. Sci. Eng. A., 445-446, 620-624 (2007).  https://doi.org/10.1016/j.msea.2006.09.097
  20. T.-W. Kim, J.-S. Lee, Y.-C. Kim, Y.-C. Joo, and B.-J. Kim, "Bending strain and bending fatigue lifetime of flexible metal electrodes on polymer substrates", Materials, 12(15), 2490 (2019). 
  21. G. P. Zhang, C. A. Volkert, R. Schwaiger, P. Wellner, E. Arzt, and O. Kraft. "Length-scale-controlled fatigue mechanisms in thin copper films", Acta. Mater., 54(11), 3127 (2006). 
  22. D. Wang, C. A. Volkert, and O. Kraft. "Effect of length scale on fatigue life and damage formation in thin Cu films", Mater. Sci. Eng. A., 493(1-2), 267 (2008). 
  23. G. P. Zhang, K. H. Sun, B. Zhang, J. Gong, C. Sun, and Z. G Wang, "Tensile and fatigue strength of ultrathin copper films", Mater. Sci. Eng. A., 483-484(15), 387 (2008). 
  24. S. J. Bull, "Failure modes in scratch adhesion testing", Surf. Coat. Technol., 50(1), 25 (1991) 
  25. N. Panich and Y. Sun, "Mechanical properties of TiB2-based nanostructured coatings", Surf. Coat. Technol., 198, 14 (2005) 
  26. C. Y. Kim, J.-H. Song, and K. Park, " Tensile Tests for Copper Thin Foils by Using DIC Method ", Trans. Korean Soc. Mech. Eng. A, 36(12), 1529-1534 (2012).  https://doi.org/10.3795/KSME-A.2012.36.12.1529
  27. O. Kraft, R. Schwaiger, and P. Wellner, "Fatigue in Thin Films: Lifetime and Damage Formation", Mater. Sci. Eng. A, 319-321, 919 (2001). 
  28. B.-J. Kim, H.-A.-S. Shin, S.-Y. Jung, T. Cho, O. Kraft, I.-S. Choi, and Y.-C. Joo, "Crack Nucleation during Mechanical Fatigue in Thin Metal Films on Flexible Substrates", Acta Mater., 61(9), 3473 (2013). 
  29. V. M. Marx, C. Kirchlechner, I. Zizak, M. J. Cordill, and G. Dehm, "Adhesion measurement of a buried Cr interlayer on polyimide", Phil. Mag., 95(16-18), 1982 (2015). 
  30. H. Jia, F. Liu, Z. An, W. Li, G. Wang, J. P. Chu, J. S.C. Jang, Y. Gao, and P. K. Liaw, "Thin-film metallic glasses for substrate fatigue-property improvements", Thin Solid Films, 561, 2 (2014). 
  31. G.-D. Sim, Y.-S. Lee, S.-B. Lee, and J. J. Vlassak, "Effects of stretching and cycling on the fatigue behavior of polymer-supported Ag thin films", Mater. Sci. Eng. A., 575, 86 (2013). 
  32. G.-D. Sim, Y. Hwangbo, H.-H. Kim, S.-B. Lee, and J. J. Vlassak, "Fatigue of polymer-supported Ag thin films", Scr. Mater., 66, 915 (2012).