DOI QR코드

DOI QR Code

A Study on Design of Type IV Hydrogen Pressure Vessels with Filament Winding Method

필라멘트 와인딩 공법을 적용한 타입 IV 수소 압력용기 설계 연구

  • Sungjin Ahn (School of Mechanical Engineering, Kunsan National University) ;
  • Hyunbum Park (School of Mechanical Engineering, Kunsan National University)
  • 안성진 (군산대학교 기계공학부) ;
  • 박현범 (군산대학교 기계공학부)
  • Received : 2023.10.11
  • Accepted : 2023.11.17
  • Published : 2023.12.31

Abstract

In this study, designing of a Type 4 pressure vessel using the filament winding method was conducted. In order to prevent leakage in consideration of the design of the hydrogen storage tank, a liner was designed by applying high-density polyethylene (HDPE), and the composite structure was designed by stacking carbon/epoxy in the hoop and helical directions. As a theoretical approach, the angle of the helical fiber and fiber thickness of each hoop and helix were designed. The safety of the design was verified using the commercial software ANSYS.

본 연구에서는 필라멘트 와인딩 공법을 적용한 Type 4 압력용기의 설계를 수행하였다. 수소저장용 탱크의 설계인 점을 고려하여 누설을 방지하기 위해 라이너는 고분자 고밀도 폴리에틸렌(HDPE)을 적용하였고 복합재 구조는 카본/에폭시를 Hoop 방향과 Helical 방향으로 적층하여 설계하였다. 이론적 접근으로 Helical 섬유의 각도와 Hoop, Helical 각각의 섬유 두께를 결정하여 설계하였다. 설계에 대한 안전성은 상용소프트웨어인 ANSYS를 활용하여 유한요소 해석으로 검증하였다.

Keywords

Acknowledgement

본 연구는 2023년도 교육부의 재원으로 한국기초과학지원연구원 국가연구시설장비진흥센터의 지원을 받아 수행된 연구임.(2023R1A6C101B042) / 이 논문은 2022년도 정부(산업통상자원부)의 재원으로 한국에너지기술평가원의 지원을 받아 수행된 연구임(20224000000040).

References

  1. O. Kartav, S. Kangal, K. Yuceturk, M. Tanoglu, E. Aktas, and H. S. Artem, "Development and analysis of composite overwrapped pressure vessels for hydrogen storage," Journal of Composite Materials, vol. 55, July 2021.
  2. S. Alam, G. R. Yandek, R. C. Lee, J. M. Mabry, "Design and development of a filament wound composite overwrapped pressure vessel," Composites Part C: Open Access, vol. 2, October 2020.
  3. L. Zu, H. Xu, H. Wang, B. Zhang, B. Zi, "Design and analysis of filament-wound composite pressure vessels based on non-geodesic winding," Composite Structures, vol. 207, Pages 41-52, January 2019. https://doi.org/10.1016/j.compstruct.2018.09.007
  4. R. Rafiee, M. A. Torabi, "Stochastic prediction of burst pressure in composite pressure vessels," Composite Structures, vol. 185, Pages 573-583, February 2018. https://doi.org/10.1016/j.compstruct.2017.11.068
  5. S. M. jung, B. Y. Park and T. K. Hwang, "Study on Optimizing Manufacturing Parameters for a Composite Pressure Vessel to Improve Structural Performance and Quality," Journal of the Korean Society of Manufacturing Process Engineers, vol. 4, pp. 1,171-1,178, December 2014.
  6. S. M. Cho, M. S. Cho, G. S. Jung, S. K. Lee, S. K. Lee, K. D. Park, S. K. Lyu, "A Study on the Development of a Hybrid Fiber Reinforced Composite for a Type 4 CNG Vessel," Journal of the Korean Society of Manufacturing Process Engineers, vol. 16, pp. 97-103, July 2017. https://doi.org/10.14775/ksmpe.2017.16.4.097
  7. Y. T. Kang, G. Y. Park, H. S. Kwak, H. N. Qi, C. Kim, "Optimal design of curing process for manufacturing a high pressure hydrogen vessel (type 4)," Journal of Mechanical Science and Technology, vol. 37, pp. 3,495-3505, 2023. https://doi.org/10.1007/s12206-023-0614-3
  8. G. Y. Park, Y. T. Kang, C. H. Lee, C. Kim, "A Study on Design of Composite Layer using Classical Lamination Theory (CLT) for Hydrogen Pressure Vessel," Korean Society for Precision Engineering, pp. 293-293, May 2021.
  9. Y. B. Yoon, S. W. Cho, S. K. Ha, "Optimal Design of Filament Wound Composite CNG Pressure Vessel," Journal of Mechanical Science and Technology, vol. 26, pp. 23-30, 2002. https://doi.org/10.3795/KSME-A.2002.26.1.023