DOI QR코드

DOI QR Code

Optimization of Sensor Location for Real-Time Damage assessment of Cable in the cable-Stayed Bridge

사장교 케이블의 실시간 손상평가를 위한 센서 배치의 최적화

  • 방건혁 (건양대학교 재난안전공학과) ;
  • 허광희 (건양대학교 해외건설플랜트학과) ;
  • 이재훈 (건양대학교 재난안전공학과) ;
  • 이유재 (건양대학교 재난안전공학과)
  • Received : 2023.09.11
  • Accepted : 2023.12.05
  • Published : 2023.12.31

Abstract

In this study, real-time damage evaluation of cable-stayed bridges was conducted for cable damage. ICP type acceleration sensors were used for real-time damage assessment of cable-stayed bridges, and Kinetic Energy Optimization Techniques (KEOT) were used to select the optimal conditions for the location and quantity of the sensors. When a structure vibrates by an external force, KEOT measures the value of the maximum deformation energy to determine the optimal measurement position and the quantity of sensors. The damage conditions in this study were limited to cable breakage, and cable damage was caused by dividing the cable-stayed bridge into four sections. Through FE structural analysis, a virtual model similar to the actual model was created in the real-time damage evaluation method of cable. After applying random oscillation waves to the generated virtual model and model structure, cable damage to the model structure was caused. The two data were compared by defining the response output from the virtual model as a corruption-free response and the response measured from the real model as a corruption-free data. The degree of damage was evaluated by applying the data of the damaged cable-stayed bridge to the Improved Mahalanobis Distance (IMD) theory from the data of the intact cable-stayed bridge. As a result of evaluating damage with IMD theory, it was identified as a useful damage evaluation technology that can properly find damage by section in real time and apply it to real-time monitoring.

본 연구에서는 케이블의 손상에 대한 사장교의 실시간 손상평가를 진행하였다. 사장교의 실시간 손상평가를 위한 센서는 가속도 센서를 사용하였으며, KEOT(Kinetic Energy Optimization Techniques)를 이용하여 센서의 위치와 수량에 대한 최적의 조건을 선정했다. KEOT는 구조물이 외력에 의해서 진동할 때, 최대변형에너지의 값을 계측하여 최적 계측 위치와 센서의 수량을 결정한다. 본 연구에서의 손상 조건은 케이블의 파단으로 제한하였으며 사장교를 4개의 구간으로 나누어 구간별 케이블 손상을 주었다. 사장교 케이블의 실시간 손상평가 방법은 FE 구조해석을 통하여 실제 모델과 유사한 가상의 모델을 만들었다. 생성된 가상 모델과 모형 구조물에 랜덤 가진파를 가한 이후 모형 구조물의 케이블 손상을 주었다. 가상 모델에서 출력되는 응답을 무손상 상태의 응답으로 정의하고 실제 모델에서 계측되는 응답을 손상 상태의 데이터로 정의하여 두 데이터를 비교하였다. 무손상 상태의 사장교의 데이터로부터 손상 상태의 사장교의 데이터를 IMD(Improved Mahalanobis Distance) 이론에 적용하여 손상의 정도를 평가하였다. IMD 이론으로 손상을 평가한 결과 구간별 손상을 실시간으로 적절하게 찾아내어 실시간 모니터링에 적용할 수 있는 유용한 손상평가 기술로 확인되었다.

Keywords

Acknowledgement

본 연구는 2018년 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구사업(과제번호: NRF-2018R1A6A1A03025542)의 연구비 지원으로 수행되었으며, 이에 감사드립니다.

References

  1. Lee, S. G., Joo, B. C., and Kim, J. H. (2022), Cable-supported Bridge Safety Inspection Blind Spot Elimination Technology using Drones, Korean Society of Disaster & Security, 15(4), 31-38 (in Korean).
  2. Lee, K. H., Ahn, B. J., and Kim, D. H. (2011), Fiber Optic Displacement Sensor System for Structural Health Monitoring, Journal of the Korea Society for Nonderstructive Testing, 31(4), 374-381 (in Korean).
  3. Jun, Y. J., Park, I. W., and Lee, U. S. (2012), A Method of Lamb-Wave Modes Decomposition for Structural Health Monitoring, Journal of the Korean Society for Precision Engineering, 29(8), 887-895. https://doi.org/10.7736/KSPE.2012.29.8.887
  4. Bae, J. H., and Chang, S. H. (2017), Feasibility Check of Textile Sensor Made of P(VDF-TrFE) for Structural Health Monitoring of Composite Structures, Composites Research(online), 30(2), 126-131. (in Korean). https://doi.org/10.7234/composres.2017.30.2.126
  5. Kim, E. J., Park, J. W., and Sim, S. H. (2016), Kalman Filter-based Data Recovery in Wireless Smart Sensor Network for Infrastructure Monitoring, Journal of the Korea Institute for Structural Maintenance and Inspection, 20(3), 42-48 (in Korean). https://doi.org/10.11112/jksmi.2016.20.3.042
  6. Kim, S. W. (2017). Real-Time Monitoring System Based on IPv6 over BLE. Journal of the Korea Institute of Information and Communication Engineering, 21(2), 309-315 (in Korean). https://doi.org/10.6109/jkiice.2017.21.2.309
  7. Lim, J. D., Kim, J. J., Hong, D. E., and Jung, H. K. (2018), Safety Monitoring System of Structures Using MEMS Sensor, Journal of the Korea Institute of Information and Communication Engineering, 22(10), 1307-1313 (in Korean).
  8. Lee, J. J., Park, Y. S., Yun, C. B., Koo, K. Y., and Yi, J. H. (2008), An Overview of Information Processing Techniques for Structural Health Monitoring of Bridges, Journal of the Computational Structural Engineering Institute, 21(6), 615-632 (in Korean).
  9. Heo, G. H., Lee, C. O., Seo, S. G., Jeong, Y. S., and Jeon, J. R. (2020), Compression Sensing Technique for Efficient Structrual Health Monitoring - Focusing on Optimization of CAFB and Shaking Table Test Using Kobe Seismic Waveforms, Journal of the Korea Insititute for Structural Maintenance and Inspection, 24(2), 23-32 (in Korean). https://doi.org/10.5000/EESK.2020.24.2.067
  10. Kim, H. (2005), The optimum displacement measurement to estimate realtime states of Beam, Master's dissertation, Korea University, Seoul, South Korea, 1-6 (in Korean).
  11. Park, S. Y. (2003), Optimal Placement of Sensors for Damage Detection in a Structure and its Application, Jorunal of the Earthquake Engineering Society of Korea, 7(4), 81-87 (in Korean). https://doi.org/10.5000/EESK.2003.7.4.081