PELL AND PELL-LUCAS NUMBERS WHICH ARE CONCATENATIONS OF TWO REPDIGITS

Merve Güney Duman* and FATİH ERDUVAN

Abstract

In this study, we search for Pell and Pell-Lucas numbers, which are concatenations of two repdigits and find these numbers to be only $12,29,70$ and $14,34,82$, respectively. We use Baker's Theory and Baker-Davenport basis reduction method while finding the solutions.

1. Introduction

Let $\left(P_{k}\right)_{k \geq 0}$ be the sequence of Pell numbers given by

$$
P_{0}=0, P_{1}=1 ; P_{k}=2 P_{k-1}+P_{k-2} \text { for } k \geq 2
$$

and $\left(Q_{k}\right)_{k \geq 0}$ be the sequence of Pell-Lucas numbers given by

$$
Q_{0}=2, Q_{1}=2 ; Q_{k}=2 Q_{k-1}+Q_{k-2} \text { for } k \geq 2
$$

$\alpha=1+\sqrt{2}$ and $\beta=1-\sqrt{2}$ are the roots of the characteristic equation $x^{2}-$ $2 x-1=0$. It is clear that $2<\alpha<3,-1<\beta<0$ and $\alpha \beta=-1$. Moreover, it is well known that

$$
P_{k}=\frac{\alpha^{k}-\beta^{k}}{2 \sqrt{2}} \text { and } Q_{k}=\alpha^{k}+\beta^{k}
$$

The equalities are called the Binet formulas. The following inequalities

$$
\begin{equation*}
\alpha^{n-2} \leq P_{n} \leq \alpha^{n-1} \text { for } n \geq 0 \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\alpha^{n-1} \leq Q_{n} \leq 2 \alpha^{n} \text { for } n \geq 1 \tag{2}
\end{equation*}
$$

can be proved by the induction method. A non-negative integer is called a base b-repdigit if its all digits are the same in base b. Let N be a non-negative

Received February 6, 2022. Accepted June 3, 2023.
2020 Mathematics Subject Classification. 11K31, 11J86, 11D61.
Key words and phrases. Pell and Pell-Lucas numbers, concatenations, linear forms in logarithms, exponential Diophantine equations.
*Corresponding author
integer. If N is a repdigit, then it is written as

$$
N=\frac{d\left(10^{m}-1\right)}{9}=\underbrace{\overline{d \cdots d}}_{m \text { times }}
$$

for some non-negative integers d, m with $0 \leq d \leq 9$ and $m \geq 1$. In [10], Faye and Luca have determined the largest repdigits in the Pell and Pell-Lucas numbers as $P_{3}=5$ as $Q_{2}=6$ respectively. If the form of M is

$$
M=\underbrace{d_{1} \ldots d_{1}}_{m_{1} \text { times }} \underbrace{d_{2} \ldots d_{2}}_{m_{2} \text { times }} \ldots \underbrace{d_{k} \ldots d_{k}}_{m_{k} \text { times}},
$$

then it is said that M is a concatenations of k repdigits for some non-negative integers with $k \geq 1,0 \leq d_{k} \leq 9$, and $d_{1} \geq 1$. The concatenations of two repdigits of different sequences have been studied by some authors. The solutions of equations of this type are given in [1] for Fibonacci numbers, in [6] for Padovan numbers, in [7] for Tribonacci numbers, and in [12] for Balancing numbers. In this study, we discussed the solutions of the Diophantine equations

$$
\begin{equation*}
P_{n}=\underbrace{\overline{d_{1} \cdots d_{1}} \underbrace{d_{2} \cdots d_{2}}_{m_{2} \text { times }}}_{m_{1} \text { times }} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
Q_{n}=\underbrace{\overline{d_{1} \cdots d_{1} d_{2} \cdots d_{2}}}_{m_{1} \text { times }}, \tag{4}
\end{equation*}
$$

where $d_{1}, m_{1}, m_{2} \geq 1$ and $d_{1}, d_{2} \in\{0,1, \ldots, 9\}$. That is, we determined all Pell and Pell-Lucas numbers that are concatenations of two repdigits as $\{12,29,70\}$ and $\{14,34,82\}$, respectively. In Section 2, we give some definitions and lemmas to solve these Diophantine equations. In Section 3, we prove our main theorems by using a version of Matveev's result and Baker-Davenport basis reduction method.

2. Preliminaries

Assume that η is an algebraic number of degree d, the $\eta^{(i)}$ represent the conjugates of η, and minimal polynomial of η over \mathbb{Z} is

$$
a_{0} x^{d}+a_{1} x^{d-1}+\ldots+a_{d}=a_{0} \prod_{i=1}^{d}\left(x-\eta^{(i)}\right) \in \mathbb{Z}[x] .
$$

The logarithmic height of η is defined as

$$
\begin{equation*}
h(\eta)=\frac{1}{d}\left(\log a_{0}+\sum_{i=1}^{d} \log \left(\max \left\{\left|\eta^{(i)}\right|, 1\right\}\right)\right) \tag{5}
\end{equation*}
$$

The following properties can be found (see [5]):

$$
\begin{gathered}
h(\gamma \pm \eta) \leq \log 2+h(\gamma)+h(\eta), \\
h\left(\gamma \eta^{ \pm 1}\right) \leq h(\gamma)+h(\eta), \\
h\left(\eta^{m}\right)=|m| h(\eta),
\end{gathered}
$$

and

$$
h(a / b)=\log (\max \{|a|, b\}),
$$

where $b \geq 1$ and $\operatorname{gcd}(a, b)=1$.
The following lemma is owing to Matveev in [11] and also in [4]. Using this lemma, we find a large bound for the n in the equations (3) and (4).

Lemma 2.1. Let $\gamma_{1}, \gamma_{2}, \ldots, \gamma_{t}$ be positive real algebraic numbers in a real algebraic number field \mathbb{K} of degree D. Assume that $b_{1}, b_{2}, \ldots, b_{t}$ are rational integers and

$$
\Lambda:=\gamma_{1}^{b_{1}} \cdots \gamma_{t}^{b_{t}}-1
$$

is not equal to zero. Then

$$
|\Lambda|>\exp \left(T \cdot(1+\log B)(1+\log D) \cdot A_{1} \cdot A_{2} \cdot \ldots \cdot A_{t}\right)
$$

where

$$
\begin{gathered}
T=-1.4 \cdot 30^{t+3} \cdot t^{4.5} \cdot D^{2} \\
B \geq \max \left\{\left|b_{1}\right|, \ldots,\left|b_{t}\right|\right\}
\end{gathered}
$$

and

$$
A_{i} \geq \max \left\{D h\left(\gamma_{i}\right),\left|\log \gamma_{i}\right|, 0.16\right\}
$$

for all $i=1, \ldots, t$.
We use the following lemma given in [3] to reduce the bound found from the Lemma 2.1. Also, this lemma is a revision of the result given by Dujella and Pethő in [9]. Moreover, the result given in [9] is a revision of a lemma given by Baker and Davenport in [2].

Lemma 2.2. ([3], Lemma 1) Assume that $A>0, B>1, \mu$ are some real numbers, and p / q is a convergent of the continued fraction of the irrational number γ such that $q>6 M$. Let $u, v, w, M \in \mathbb{Z}^{+},||x||=\min \{|x-n|: n \in \mathbb{Z}\}$ for any real number x, and $\epsilon:=\|\mu q\|-M\|\gamma q\|$. If $\epsilon>0$, then the inequality

$$
0<|u \gamma-v+\mu|<A B^{-w}
$$

has no solution with

$$
u \leq M \text { and } w \geq \frac{\log (A q / \epsilon)}{\log B}
$$

The following two lemmas are given in [13] and [8], respectively.

Lemma 2.3. Assume that $a, x \in \mathbb{R}$. If $|x|<a$ and $0<a<1$, then

$$
|\log (1+x)|<\frac{-\log (1-a)}{a} \cdot|x|
$$

and

$$
|x|<\frac{a}{1-e^{-a}} \cdot\left|e^{x}-1\right| .
$$

Lemma 2.4. Assume that M is a positive integer, N is a nonnegative integer such that $q_{N}>M, \tau$ is an irrational number with $\tau=\left[a_{0} ; a_{1}, a_{2}, a_{3}, \ldots\right]$ and for $i=0,1,2 \ldots, p_{i} / q_{i}:=\left[a_{0}, a_{1}, . ., a_{i}\right]$ is the i-th convergents of the continued fraction expansion of τ. Put $a(M):=\max \left\{a_{i}: i=0,1,2, \ldots, N\right\}$. Then the inequality

$$
\left|\tau-\frac{r}{s}\right|>\frac{1}{(a(M)+2) s^{2}}
$$

holds for all r and s values where $r>0$ and $0<s<M$.

3. Main Theorems

Theorem 3.1. The only Pell numbers that are concatenations of two repdigits are 12, 29, 70.

Proof. Let $P_{n}=\underbrace{\overline{d_{1} \cdots d_{1} d_{2} \cdots d_{2}}}_{m_{1} \text { times } m_{2} \text { times }}$. If we look at the first 64 Pell numbers, then it is seen that all solutions of this Diophantine equation are $P_{n} \in$ $\{12,29,70\}$. If $d_{1}=d_{2}$, the authors also showed that the biggest repdigit in the Pell numbers is $P_{3}=5$ in [10]. From now on, we assume that $n \geq 65$ and $d_{1} \neq d_{2}$ in the equation (3). Now, let

$$
P_{n}=\underbrace{\overline{d_{1} \cdots d_{2} \text { times }} d_{2} \cdots d_{2}}_{m_{1} \text { times }}=\underbrace{d_{1} \cdots d_{1}}_{m_{1} \text { times }} \times 10^{m_{2}}+\underbrace{d_{2} \cdots d_{2}}_{m_{2} \text { times }} .
$$

Then we have

$$
\begin{equation*}
P_{n}=\frac{d_{1}\left(10^{m_{1}}-1\right)}{9} 10^{m_{2}}+\frac{d_{2}\left(10^{m_{2}}-1\right)}{9} \tag{6}
\end{equation*}
$$

i.e.,

$$
\begin{equation*}
\frac{\alpha^{n}-\beta^{n}}{2 \sqrt{2}}=P_{n}=\frac{1}{9}\left(d_{1} 10^{m_{1}+m_{2}}-\left(d_{1}-d_{2}\right) 10^{m_{2}}-d_{2}\right) . \tag{7}
\end{equation*}
$$

If (1) and (6) are combined, it follows that

$$
10^{m_{1}+m_{2}-1}<P_{n} \leq \alpha^{n-1}<10^{n-1}
$$

From here, we have $m_{1}+m_{2}<n$. On the other hand, the equation (7) can be rewritten as

$$
\begin{equation*}
\frac{9 \alpha^{n}}{\sqrt{8}}-d_{1} 10^{m_{1}+m_{2}}=\frac{9 \beta^{n}}{\sqrt{8}}-\left(d_{1}-d_{2}\right) 10^{m_{2}}-d_{2} \tag{8}
\end{equation*}
$$

If we used the fact that $n \geq 65$, we obtain

$$
\begin{aligned}
\left|\frac{9 \alpha^{n}}{\sqrt{8}}-d_{1} 10^{m_{1}+m_{2}}\right| & \leq \frac{9|\beta|^{n}}{\sqrt{8}}+\left|d_{1}-d_{2}\right| 10^{m_{2}}+d_{2} \\
& <9|\beta|^{n}+9 \cdot 10^{m_{2}}+9 \\
& \leq(0.9) 10^{m_{2}}|\beta|^{n}+9 \cdot 10^{m_{2}}+(0.9) 10^{m_{2}} \\
& =\left(0.9 \cdot|\beta|^{n}+9.9\right) \cdot 10^{m_{2}}
\end{aligned}
$$

i.e.,

$$
\begin{equation*}
\left|\frac{9 \alpha^{n}}{\sqrt{8}}-d_{1} 10^{m_{1}+m_{2}}\right|<(9.91) \cdot 10^{m_{2}} \tag{9}
\end{equation*}
$$

from (8). If both sides of the inequality (9) are divided by $d_{1} 10^{m_{1}+m_{2}}$, we get

$$
\begin{equation*}
\left|\left(\frac{9}{d_{1} \sqrt{8}}\right) \alpha^{n} 10^{-m_{1}-m_{2}}-1\right| \leq \frac{(9.91) \cdot 10^{m_{2}}}{d_{1} 10^{m_{1}+m_{2}}}<\frac{9.91}{10^{m_{1}}} \tag{10}
\end{equation*}
$$

Now, let's take $\Lambda_{1}:=\left(\frac{9}{d_{1} \sqrt{8}}\right) \alpha^{n} 10^{-m_{1}-m_{2}}-1, \gamma_{1}:=9 /\left(d_{1} \sqrt{8}\right), \gamma_{2}:=\alpha$, $\gamma_{3}:=10$, and $b_{1}:=1, b_{2}:=n, b_{3}:=-m_{1}-m_{2}$ to apply Lemma 2.1. Firstly, it should be examined whether the conditions necessary to use the Lemma 2.1 are ensure. The numbers γ_{1}, γ_{2}, and γ_{3} are positive real numbers that are elements of the field $K=\mathbb{Q}(\sqrt{2})$. Since $[K: Q]=2$, we obtain $D=2$. Now, we will show that $\Lambda_{1} \neq 0$. Assume that $\Lambda_{1}=0$. Then we get $\alpha^{n}=\frac{d_{1} \sqrt{8} \cdot 10^{m_{1}+m_{2}}}{9}$ and $\beta^{n}=\frac{-d_{1} \sqrt{8} \cdot 10^{m_{1}+m_{2}}}{9}$. Thus, it follows that $\alpha^{n}+\beta^{n}=0=Q_{n}$. This is impossible. Therefore $\Lambda_{1} \neq 0$. Moreover, since

$$
\begin{aligned}
h\left(\gamma_{1}\right) & =h\left(9 /\left(d_{1} \sqrt{8}\right) \leq h(9)+h(\sqrt{8})+h\left(d_{1}\right)\right. \\
& <2 \log 9+\frac{\log 8}{2}<5.44 \\
h\left(\gamma_{2}\right) & =h(\alpha)=\frac{\log \alpha}{2}<0.45,
\end{aligned}
$$

and

$$
h\left(\gamma_{3}\right)=h(10)=\log 10<2.3099
$$

we can choose $A_{1}:=10.88, A_{2}:=0.9$, and $A_{3}:=4.62$. Since $m_{1}+m_{2}<n$, $B:=n$ can be taken. Put $T=-1.4 \cdot 30^{6} \cdot 3^{4.5} \cdot 2^{2}(1+\log 2) \cdot(0.9) \cdot(4.62)$. Therefore, we have

$$
(9.91) \cdot 10^{-m_{1}}>\left|\Lambda_{1}\right|>\exp (T \cdot(1+\log n) \cdot(10.88))
$$

by using (10) and Lemma 2.1. It follows that

$$
\begin{equation*}
m_{1} \log 10<4.39 \cdot 10^{13} \cdot(1+\log n)+\log (9.91) \tag{11}
\end{equation*}
$$

by a simple computation. If we reform the equation (7) as

$$
\begin{equation*}
\frac{9 \alpha^{n}}{\sqrt{8}}-\left(d_{1} \cdot 10^{m_{1}}-\left(d_{1}-d_{2}\right)\right) 10^{m_{2}}=\frac{9 \beta^{n}}{\sqrt{8}}-d_{2} \tag{12}
\end{equation*}
$$

and take the absolute values of the equation (12), then it is seen that

$$
\left|\frac{9 \alpha^{n}}{\sqrt{8}}-\left(d_{1} \cdot 10^{m_{1}}-\left(d_{1}-d_{2}\right)\right) 10^{m_{2}}\right| \leq \frac{9|\beta|^{n}}{\sqrt{8}}+d_{2}
$$

Since $d_{2} \leq 9$, we obtain

$$
\begin{equation*}
\left|\frac{9 \alpha^{n}}{\sqrt{8}}-\left(d_{1} \cdot 10^{m_{1}}-\left(d_{1}-d_{2}\right)\right) 10^{m_{2}}\right| \leq 9|\beta|^{n}+9<9.1 \tag{13}
\end{equation*}
$$

Dividing both sides of (13) by $\frac{9 \alpha^{n}}{\sqrt{8}}$, we give

$$
\begin{equation*}
\left|1-\left(\frac{d_{1} \cdot 10^{m_{1}}-\left(d_{1}-d_{2}\right)}{9}\right) \sqrt{8} \alpha^{-n} 10^{m_{2}}\right| \leq 2.86 \cdot \alpha^{-n} \tag{14}
\end{equation*}
$$

Assume that

$$
\begin{gathered}
\Lambda_{2}:=1-\left(\frac{d_{1} \cdot 10^{m_{1}}-\left(d_{1}-d_{2}\right)}{9}\right) \sqrt{8} \alpha^{-n} 10^{m_{2}} \\
\gamma_{1}:=\left(\frac{d_{1} \cdot 10^{m_{1}}-\left(d_{1}-d_{2}\right)}{9}\right) \sqrt{8}, \gamma_{2}:=\alpha, \gamma_{3}:=10
\end{gathered}
$$

and $b_{1}:=1, b_{2}:=-n, b_{3}:=m_{2}$ to apply Lemma 2.1. The numbers γ_{1}, γ_{2}, and γ_{3} are elements of the field $K=\mathbb{Q}(\sqrt{2})$ and they are positive real numbers. Since $[K: Q]=2$, we have $D=2$. It is clear that Λ_{2} is nonzero. By using, the properties of the logarithmic height, we get

$$
\begin{aligned}
h\left(\gamma_{1}\right) & =h\left(\left(\frac{d_{1}\left(10^{m_{1}}-1\right)+d_{2}}{9}\right) \sqrt{8}\right) \\
\leq & h(9)+h\left(d_{1}\right)+h\left(10^{m_{1}}\right)+h\left(d_{2}\right)+2 \log 2+h(\sqrt{8}) \\
\leq & 3 \log 9+m_{1} \log 10+2 \log 2+\frac{\log 8}{2} \\
< & 9.02+m_{1} \log 10 \\
& \quad h\left(\gamma_{2}\right)=h(\alpha)=\frac{\log \alpha}{2}<0.45
\end{aligned}
$$

and

$$
h\left(\gamma_{3}\right)=h(10)=\log 10<2.31
$$

So, we can choose $A_{1}:=18.04+2 m_{1} \log 10, A_{2}:=0.9, A_{3}:=4.62$ and $B:=n$, since $m_{2}<n-1$. By using Lemma 2.1 and (14), we have

$$
2.86 \cdot \alpha^{-n}>\left|\Lambda_{2}\right|>\exp \left(T \cdot\left(18.04+2 m_{1} \log 10\right) \cdot(1+\log n)\right)
$$

i.e.,
(15) $n \log \alpha-\log (2.86)<4.04 \cdot 10^{12} \cdot(1+\log n)\left(18.04+2 m_{1} \log 10\right)$.

By using (11) and (15), we find $n<2.02 \cdot 10^{30}$ thanks to easy calculation. We apply Lemma 2.2 to reduce the upper bound on n. Assume that

$$
z_{1}:=\log 10 \cdot\left(m_{1}+m_{2}\right)-\log \alpha \cdot n-\log \left(\frac{9}{d_{1} \sqrt{8}}\right) .
$$

We can write

$$
|x|=\left|e^{-z_{1}}-1\right|<\frac{9.91}{10^{m_{1}}}<0.999
$$

for $m_{1} \geq 1$ from (10). By Lemma 2.3, we have the inequality

$$
\left|z_{1}\right|=|\log (x+1)|<\frac{\log 1000}{0.999} \cdot \frac{9.91}{10^{m_{1}}}<\frac{68.53}{10^{m_{1}}}
$$

for $a:=0.999$. Thus, we find
(16) $0<\left|\frac{\log 10}{\log \alpha} \cdot\left(m_{1}+m_{2}\right)-n-\left(\frac{\log \left(9 /\left(d_{1} \sqrt{8}\right)\right)}{\log \alpha}\right)\right|<(77.76) \cdot 10^{-m_{1}}$.

Let's take

$$
\begin{aligned}
& \gamma:=\log 10 / \log \alpha \notin \mathbb{Q} \\
& \mu:=-\frac{\log \left(9 /\left(d_{1} \sqrt{8}\right)\right)}{\log \alpha}
\end{aligned}
$$

and $m_{1}+m_{2}<M:=2.02 \cdot 10^{30}$ to use Lemma 2.2. Then it can be seen that the denominator of the 70th convergent of γ exceeds $6 M$ by using a computer program. Also,

$$
\epsilon:=\left\|\mu q_{70}\right\|-M\left\|\gamma q_{70}\right\|>0.005
$$

for $1 \leq d_{1} \leq 9$. Let $A:=77.76, B:=10$ and $w:=m_{1}$. Then, there is no solution to the inequality (16) for

$$
m_{1} \geq 36.56>\frac{\log \left(A q_{70} / \epsilon\right)}{\log B}
$$

So $m_{1} \leq 36$. Replacing this upper bound for m_{1} into (15), $n<3.29 \cdot 10^{16}$ is found. We'll use Lemma 2.2 and Lemma 2.3 again to make n even smaller. Assume that

$$
z_{2}:=\log 10 \cdot m_{2}-\log \alpha \cdot n+\log \left(\frac{d_{1} \cdot 10^{m_{1}}-\left(d_{1}-d_{2}\right)}{9} \sqrt{8}\right)
$$

From (14), it is seen that

$$
|x|=\left|e^{z_{2}}-1\right|<(2.86) \cdot \alpha^{-n}<0.01 \text { for } n \geq 65
$$

By Lemma 2.3, if we choose $a:=0.01$, we obtain

$$
\left|z_{2}\right|=|\log (x+1)|<\frac{\log (100 / 99)}{0.01} \cdot \frac{(2.86)}{\alpha^{n}}<\frac{2.88}{\alpha^{n}}
$$

Hence, it can be seen that,
(17) $0<\left|m_{2} \cdot \frac{\log 10}{\log \alpha}-n+\frac{\log \left(\left(d_{1} 10^{m_{1}}-\left(d_{1}-d_{2}\right)\right) \sqrt{8} / 9\right)}{\log \alpha}\right|<3.27 \cdot \alpha^{-n}$.

Putting $\gamma:=\frac{\log 10}{\log \alpha}$ and $m_{2}<M:=3.29 \cdot 10^{16}$. Then, the denominator of the 45 th convergent of γ exceeds $6 M$. Let

$$
\mu:=\frac{\log \left(\left(d_{1} 10^{m_{1}}-\left(d_{1}-d_{2}\right)\right) \sqrt{8} / 9\right)}{\log \alpha}
$$

Since $1 \leq m_{1} \leq 36, d_{1} \neq d_{2}, 1 \leq d_{1} \leq 9$ and $0 \leq d_{2} \leq 9$, we find

$$
\epsilon:=\left\|\mu q_{45}\right\|-M\left\|\gamma q_{45}\right\|>0.0002
$$

by using a computer program. In Lemma 2.2, let $A:=3.27, B:=\alpha$, and $w:=n$. Then, there is no solution to the inequality (17) for

$$
n \geq 59.54>\frac{\log \left(A q_{45} / \epsilon\right)}{\log B}
$$

So $n \leq 59$. This is impossible since $n \geq 65$.
Theorem 3.2. The only Pell-Lucas numbers that are concatenations of two repdigits are $14,34,82$.

Proof. Let $Q_{n}=\underbrace{\overline{d_{1} \cdots d_{1} d_{2} d_{2} \cdots d_{2}}}_{m_{1} \text { times }}$. If we look at the first 94 Pell-Lucas numbers, then it is seen that all solutions of this Diophantine equation are $Q_{n} \in\{14,34,82\}$. If $d_{1}=d_{2}$, the authors also showed that the biggest repdigit in the Pell numbers is $Q_{2}=6$ in [10]. From now on, we assume that $n \geq 95$ and $d_{1} \neq d_{2}$ in the equation (4). Furthermore, the identity

$$
Q_{n} \equiv 2,4,6,8(\bmod 10)
$$

is well known for $n \geq 0$. Thus, we take $d_{2}=2,4,6,8$. Now, let

$$
Q_{n}=\underbrace{\overline{d_{1} \cdots d_{m_{2}} \text { times }} d_{2} \cdots d_{2}}_{m_{1} \text { times }}=\underbrace{d_{1} \cdots d_{1}}_{m_{1} \text { times }} \times 10^{m_{2}}+\underbrace{d_{2} \cdots d_{2}}_{m_{2} \text { times }} .
$$

Then we have

$$
\begin{equation*}
Q_{n}=\frac{d_{1}\left(10^{m_{1}}-1\right)}{9} 10^{m_{2}}+\frac{d_{2}\left(10^{m_{2}}-1\right)}{9} \tag{18}
\end{equation*}
$$

and

$$
\begin{equation*}
\alpha^{n}+\beta^{n}=Q_{n}=\frac{1}{9}\left(d_{1} 10^{m_{1}+m_{2}}-\left(d_{1}-d_{2}\right) 10^{m_{2}}-d_{2}\right) . \tag{19}
\end{equation*}
$$

Combining (2) and (18), we get

$$
10^{m_{1}+m_{2}-1}<Q_{n} \leq 2 \alpha^{n}<10^{n+1}
$$

From this, we get $m_{1}+m_{2}<n+2$. On the other hand, the equation (19) can be rewritten as

$$
\begin{equation*}
9 \alpha^{n}-d_{1} 10^{m_{1}+m_{2}}=-9 \beta^{n}-\left(d_{1}-d_{2}\right) 10^{m_{2}}-d_{2} . \tag{20}
\end{equation*}
$$

From (20), using the same arguments in (8), we have

$$
\begin{equation*}
\left|\left(\frac{9}{d_{1}}\right) 10^{-m_{1}-m_{2}} \cdot \alpha^{n}-1\right|<\frac{9.91}{10^{m_{1}}} \tag{21}
\end{equation*}
$$

Now, let us apply Lemma 2.1 with $\Lambda_{1}:=\left(\frac{9}{d_{1}}\right) \alpha^{n} 10^{-m_{1}-m_{2}}-1, \gamma_{1}:=9 / d_{1}, \gamma_{2}:=$ $\alpha, \gamma_{3}:=10$ and $b_{1}:=1, b_{2}:=n, b_{3}:=-m_{1}-m_{2}$. The numbers γ_{1}, γ_{2}, and γ_{3} are elements of the field $K=\mathbb{Q}(\sqrt{2})$ and they are positive real numbers. Since $[K: Q]=2$, we have $D=2$. Assume that $\Lambda_{1}=0$. This is impossible since $\alpha^{n}=\frac{10^{m_{1}+m_{2}} \cdot d_{1}}{9}$ and α^{n} is irrational. So, $\Lambda_{1} \neq 0$. Moreover, since $m_{1}+m_{2}<n+2$,

$$
\begin{aligned}
& h\left(\gamma_{1}\right)=h\left(\frac{9}{d_{1}}\right) \leq h\left(d_{1}\right)+h(9)<2 \log 9<4.4 \\
& h\left(\gamma_{2}\right)=h(\alpha)=\frac{\log \alpha}{2}<0.45
\end{aligned}
$$

and

$$
h\left(\gamma_{3}\right)=h(10)=\log 10<2.31
$$

by (5), we can choose $B:=n+2, A_{1}:=8.8, A_{2}:=0.9$ and $A_{3}:=4.62$. By using (21) and Lemma 2.1, we have

$$
10^{-m_{1}} \cdot(9.91)>\left|\Lambda_{1}\right|>\exp (T \cdot(1+\log (n+2)) \cdot(8.8))
$$

where $T=-1.4 \cdot 30^{6} \cdot 3^{4.5} \cdot 2^{2}(1+\log 2) \cdot(0.9) \cdot(4.62)$. By a simple computation, it follows that

$$
\begin{equation*}
m_{1} \log 10<3.55 \cdot 10^{13} \cdot(1+\log (n+2))+\log (9.91) \tag{22}
\end{equation*}
$$

Reform the equation (19) as

$$
\begin{equation*}
9 \alpha^{n}-\left(d_{1} 10^{m_{1}}-\left(d_{1}-d_{2}\right)\right) 10^{m_{2}}=-9 \beta^{n}-d_{2} \tag{23}
\end{equation*}
$$

and taking absolute values of the equation (23), we find

$$
\left|9 \alpha^{n}-\left(d_{1} 10^{m_{1}}-\left(d_{1}-d_{2}\right)\right) 10^{m_{2}}\right| \leq 9|\beta|^{n}+d_{2}
$$

Thus it is written that

$$
\begin{equation*}
\left|9 \alpha^{n}-\left(d_{1} 10^{m_{1}}-\left(d_{1}-d_{2}\right)\right) 10^{m_{2}}\right| \leq 9|\beta|^{n}+9<9.1 \tag{24}
\end{equation*}
$$

If (24) is divided by $9 \alpha^{n}$, it can be seen that

$$
\begin{equation*}
\left|1-\left(\frac{d_{1} 10^{m_{1}}-\left(d_{1}-d_{2}\right)}{9}\right) \alpha^{-n} 10^{m_{2}}\right| \leq 1.02 \cdot \alpha^{-n} \tag{25}
\end{equation*}
$$

Taking

$$
\begin{gathered}
\Lambda_{2}:=1-\left(\frac{d_{1} 10^{m_{1}}-\left(d_{1}-d_{2}\right)}{9}\right) \alpha^{-n} 10^{m_{2}} \\
\gamma_{1}:=\left(\frac{d_{1} 10^{m_{1}}-\left(d_{1}-d_{2}\right)}{9}\right), \gamma_{2}:=\alpha, \gamma_{3}:=10
\end{gathered}
$$

$b_{1}:=1, b_{2}:=-n$, and $b_{3}:=m_{2}$, we apply Lemma 2.1 . The numbers γ_{1}, γ_{2} and γ_{3} are elements of the field $K=\mathbb{Q}(\sqrt{2})$. Also, they are positive real numbers.
$D=2$ since $[K: Q]=2$. Moreover, it can be easily seen that Λ_{2} is not equal to zero. We get

$$
\begin{aligned}
h\left(\gamma_{1}\right)= & h\left(\frac{d_{1}\left(10^{m_{1}}-1\right)+d_{2}}{9}\right) \\
\leq & h(9)+h\left(d_{1}\right)+h\left(10^{m_{1}}\right)+h\left(d_{2}\right)+2 \cdot \log 2 \\
\leq & 3 \cdot \log 9+m_{1} \cdot \log 10+2 \cdot \log 2 \\
< & 7.98+m_{1} \cdot \log 10 \\
& \quad h\left(\gamma_{2}\right)=h(\alpha)=\frac{\log \alpha}{2}<0.45
\end{aligned}
$$

and

$$
h\left(\gamma_{3}\right)=h(10)=\log 10<2.31
$$

by using the properties of the logarithmic height. So, we can choose $A_{1}:=$ $15.96+2 m_{1} \cdot \log 10, A_{2}:=0.9, A_{3}:=4.62$ and $B:=n+1$ since $m_{2}<n+1$. By using (25) and Lemma 2.1, it can be shown that

$$
1.02 \cdot \alpha^{-n}>\left|\Lambda_{2}\right|>\exp \left(T \cdot(1+\log (n+1))\left(15.96+2 m_{1} \log 10\right)\right)
$$

i.e.,
(26) $n \log \alpha-\log (1.02)<4.04 \cdot 10^{12} \cdot(1+\log (n+1))\left(15.96+2 m_{1} \log 10\right)$.

It can be seen that $n<1.63 \cdot 10^{30}$ by using the inequalities (22) and (26). Here, we apply Lemma 2.2 to minimize the upper bound on n. Assume that

$$
z_{1}:=\log 10 \cdot\left(m_{1}+m_{2}\right)-\log \alpha \cdot n-\log \left(\frac{9}{d_{1}}\right)
$$

It can be written that

$$
|x|=\left|e^{-z_{1}}-1\right|<\frac{9.91}{10^{m_{1}}}<0.999
$$

for $m_{1} \geq 1$ from (21). If we take $a:=0.999$, we find

$$
\left|z_{1}\right|=|\log (x+1)|<\frac{\log 1000}{0.999} \cdot \frac{9.91}{10^{m_{1}}}<\frac{68.53}{10^{m_{1}}}
$$

by Lemma 2.3. From here, we get

$$
\begin{equation*}
0<\left|\frac{\log 10}{\log \alpha} \cdot\left(m_{1}+m_{2}\right)-n-\left(\frac{\log \left(9 / d_{1}\right)}{\log \alpha}\right)\right|<(77.76) \cdot 10^{-m_{1}} \tag{27}
\end{equation*}
$$

To apply Lemma 2.2, let

$$
\gamma:=\frac{\log 10}{\log \alpha} \notin \mathbb{Q}, \mu:=-\frac{\log \left(9 / d_{1}\right)}{\log \alpha}
$$

and $m_{1}+m_{2}<M:=1.63 \cdot 10^{30}$. Then the denominator of the 69 th convergent of γ exceeds $6 M$ and we obtain

$$
\epsilon:=\left\|\mu q_{69}\right\|-M\left\|\gamma q_{69}\right\|>0.06
$$

for $1 \leq d_{1}<9$. Let $A:=77.76, B:=10$ and $w:=m_{1}$. Thus, there is no solution of the inequality (27) for

$$
m_{1} \geq 34.82>\frac{\log \left(A q_{69} / \epsilon\right)}{\log B}
$$

So $m_{1} \leq 34$. If $d_{1}=9$, then from (27), we have

$$
0<\left|\left(m_{1}+m_{2}\right) \frac{\log 10}{\log \alpha}-n\right|<(77.76) \cdot 10^{-m_{1}}
$$

If this inequality is divided by $m_{1}+m_{2}$, we write

$$
\begin{equation*}
0<\left|\frac{\log 10}{\log \alpha}-\frac{n}{m_{1}+m_{2}}\right|<\frac{77.76}{\left(m_{1}+m_{2}\right) \cdot 10^{m_{1}}} . \tag{28}
\end{equation*}
$$

Assume that $m_{1} \geq 35$. Then it can be seen that

$$
\frac{10^{m_{1}}}{155.52}>6.43 \cdot 10^{32}>n+2>m_{1}+m_{2}
$$

So we obtain

$$
\left|\frac{\log 10}{\log \alpha}-\frac{n}{m_{1}+m_{2}}\right|<\frac{77.76}{\left(m_{1}+m_{2}\right) \cdot 10^{m_{1}}}<\frac{1}{2 \cdot\left(m_{1}+m_{2}\right)^{2}} .
$$

It can shown that the rational number $\frac{n}{m_{1}+m_{2}}$ is a convergent of $\gamma=\frac{\log 10}{\log \alpha}$ from the known properties of continued fraction. Assume that $\frac{p_{r}}{q_{r}}$ is r-th convergent of the continued fraction of γ and $\frac{n}{m_{1}+m_{2}}$ is equal to $\frac{p_{t}}{q_{t}}$ for some t. Then it follows that $q_{68}>2 \cdot 10^{31}>n+2>m_{1}+m_{2}$, so $t \in\{0,1,2, \ldots, 67\}$ and $a_{M}=\max \left\{a_{i} \mid i=0,1,2, \ldots, 67\right\}=52$. We obtain

$$
\left|\gamma-\frac{p_{t}}{q_{t}}\right|>\frac{1}{\left(a_{M}+2\right)\left(m_{1}+m_{2}\right)^{2}}=\frac{1}{54 \cdot\left(m_{1}+m_{2}\right)^{2}}
$$

by Lemma 2.4. Thus, from (28) and the above inequality, we get

$$
\frac{77.76}{\left(m_{1}+m_{2}\right) \cdot 10^{m_{1}}}>\frac{1}{54 \cdot\left(m_{1}+m_{2}\right)^{2}}
$$

This shows that

$$
\frac{7.776}{10^{34}} \geq \frac{77.76}{10^{m_{1}}}>\frac{1}{54 \cdot\left(m_{1}+m_{2}\right)}>\frac{1}{1.08 \cdot 10^{33}}
$$

a contradiction. Therefore $m_{1} \leq 34$. Replacing this upper bound for m_{1} into (26), we get $n<3.09 \cdot 10^{16}$. If

$$
z_{2}:=\log 10 \cdot m_{2}-\log \alpha \cdot n+\log \left(\frac{d_{1} 10^{m_{1}}-\left(d_{1}-d_{2}\right)}{9}\right)
$$

is taken, from (25), it is seen that

$$
|x|=\left|e^{z_{2}}-1\right|<(1.02) \cdot \alpha^{-n}<0.01
$$

for $n \geq 95$. Taking $a:=0.01$, by Lemma 2.3, we have

$$
\left|z_{2}\right|=|\log (x+1)|<\frac{\log (100 / 99)}{0.01} \cdot \frac{(1.02)}{\alpha^{n}}<\frac{1.03}{\alpha^{n}}
$$

From here, we can say

$$
\begin{equation*}
0<\left|\frac{\log 10}{\log \alpha} \cdot m_{2}-n+\frac{\log \left(\left(d_{1} 10^{m_{1}}-\left(d_{1}-d_{2}\right)\right) / 9\right)}{\log \alpha}\right|<1.17 \cdot \alpha^{-n} \tag{29}
\end{equation*}
$$

Taking $\gamma:=\frac{\log 10}{\log \alpha}, \mu:=\frac{\log \left(\left(d_{1} 10^{m_{1}}-\left(d_{1}-d_{2}\right)\right) / 9\right)}{\log \alpha}$ and $m_{2}<M:=3.09 \cdot 10^{16}$, it can be seen that q_{58}, the denominator of the 58 th convergent of γ exceeds $6 M$. It can be shown that

$$
\epsilon:=\left\|\mu q_{58}\right\|-M\left\|\gamma q_{58}\right\|>0
$$

for $1 \leq m_{1} \leq 34, d_{1} \neq d_{2}, 1 \leq d_{1} \leq 9$ and $d_{2}=2,4,6,8$. In Lemma 2.2, we can take $A:=1.17, B:=\alpha$, and $w:=n$. Thus, we can say that there is no solution of the inequality (29) for

$$
n \geq 91.48>\frac{\log \left(A \cdot q_{58} / \epsilon\right)}{\log B}
$$

So, $n \leq 91$. This is impossible since $n \geq 95$.

References

[1] A. Alahmadi, A. Altassan, F. Luca, and H. Shoaib, Fibonacci numbers which are concatenations of two repdigits, Quaestiones Mathematicae 4 (2021), no. 2, 281-290.
[2] A. Baker and H. Davenport, The equations $3 x^{2}-2=y^{2}$ and $8 x^{2}-7=z^{2}$, Quart. J. Math. Oxford Ser. (2) 20 (1969), no. 1, 129-137.
[3] J. J. Bravo, C. A. Gomez, and F. Luca, Powers of two as sums of two k-Fibonacci numbers, Miskolc Math. Notes 17 (2016), no. 1, 85-100.
[4] Y. Bugeaud, M. Mignotte, and S. Siksek, Classical and modular approaches to exponential Diophantine equations I. Fibonacci and Lucas perfect powers, Ann. of Math. 163 (2006), no. 3, 969-1018.
[5] Y. Bugeaud, Linear Forms in Logarithms and Applications, IRMA Lectures in Mathematics and Theoretical Physics, 28, Zurich: European Mathematical Society, 2018.
[6] M. Ddamulira, Padovan numbers that are concatenations of two repdigits, Mathematica Slovaca 71 (2021), no. 2, 275-284.
[7] M. Ddamulira, Tribonacci numbers that are concatenations of two repdigits, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 114 (2020), no. 4, 203.
[8] M. Ddamulirai, On the x-coordinates of Pell equations that are products of two Padovan numbers, Integers 20 (2020), no. A70, 20 pp.
[9] A. Dujella and A. Pethò, A generalization of a theorem of Baker and Davenport, Quart. J. Math. Oxford Ser. (2) 49 (1998), no. 3, 291-306.
[10] B. Faye and F. Luca, Pell and Pell-Lucas numbers with only one distinct digit, Ann. Math. Inform. 45 (2015), 55-60.
[11] E. M. Matveev, An Explicit lower bound for a homogeneous rational linear form in the logarithms of algebraic numbers II, Izv. Ross. Akad. Nauk Ser. Mat. 64 (2000), no. 6, 125-180 (Russian); Translation in Izv. Math. 64 (2000), no. 6, 1217-1269.
[12] S. G. Rayaguru and G. K. Panda, Balancing numbers which are concatenations of two repdigits, Bol. Soc. Mat. Mex. 26 (2020), 911-919.
[13] B. M. M. de Weger, Algorithms for Diophantine Equations, CWI Tracts 65, Stichting Maths. Centrum, Amsterdam, 1989.

Merve Güney Duman
Fundamental Science in Engineering, Sakarya University of Applied Sciences, Sakarya, Türkiye.
E-mail: merveduman@subu.edu.tr

Fatih Erduvan
MEB, Namık Kemal High School, Kocaeli, Türkiye.
E-mail: erduvanmat@hotmail.com

