SCREEN GENERIC LIGHTLIKE SUBMERSIONS

Gaurav Sharma, Sangeet Kumar*, and Dinesh Kumar Sharma

Abstract

We introduce the study of a new class of a lightlike submersion $\phi: K_{1} \rightarrow K^{\prime}$ from a screen generic lightlike submanifold of an indefinite Kaehler manifold K_{2} onto an indefinite almost Hermitian manifold K^{\prime}, and show that for this case K^{\prime} must be an indefinite Kaehler manifold. Then, we derive a relationship between the holomorphic sectional curvatures of K_{2} and K^{\prime}. Finally, we present a classification theorem for a screen generic lightlike submersion, giving the relationship between the sectional curvatures of the total space K_{2} and the fibers.

1. Introduction

The theory of Riemannian and semi-Riemannian submersions has emerged as one of the most fruitful areas of research in differential geometry, and its contribution to the advancement of the subject has been significant. The geometry of submersions is observed to have a wide range of applications in differential geometry and theoretical physics, including the Kaluza-Klein theory, YangMills theory, supergravity, and superstring theory (for details, see [2], [10] and [13]).

The concept of Riemannian submersions was introduced and developed by O'Neill [15] and Grey [8]. A Riemannian submersion $\phi: K_{1} \rightarrow K^{\prime}$ naturally generates two distributions on K_{1}, referred as the horizontal and vertical distributions, respectively. For a Riemannian submersion, the integrability of vertical distribution is necessary, giving rise to the fibres of the submersion, which are closed submanifolds of K_{1}. Then Kobayashi [11] observed that for a $C R$-submanifold of a Kaehler manifold, the totally real distribution is always integrable. Kobayashi noted this similarity between the total space of a Riemannian submersion and a $C R$-submanifold, and defined the notion of a $C R$-submersion.

On the other hand, Sahin [17] introduced a new kind of submersion, specifically, a lightlike submersion defined from a semi-Riemannian manifold onto an

[^0]r-lightlike manifold. To address the comparable situation for a screen generic lightlike submanifold of an indefinite Kaehler manifold, we have used the same approach and introduced a new class of a lightlike submersion, which is called a screen generic lightlike submersion. As we know in case of a screen generic lightlike submanifold, the radical distribution $\operatorname{Rad}\left(T K_{1}\right)=S\left(T K_{1}\right) \cap S\left(T K_{1}^{\perp}\right)$ is invariant and there exists a sub-bundle D_{0} of $S\left(T K_{1}\right)$ such that $D_{0}=$ $S\left(T K_{1}\right) \cap \bar{J} S\left(T K_{1}\right)$. In this way, we find a distribution $D=D_{0} \perp \operatorname{Rad}\left(T K_{1}\right)$, which is invariant in $S\left(T K_{1}\right)$. Consequently, there exists a complementary distribution D^{\prime} of $S\left(T K_{1}\right)$ such that $S\left(T K_{1}\right)=D \oplus D^{\prime}$.

One challenge to define a screen generic lightlike submersion $\phi: K_{1} \rightarrow K^{\prime}$, where K_{1} is a screen generic lightlike submanifold of an indefinite Kaehler manifold K_{2} and K^{\prime} is an indefinite almost Hermitian manifold, is that in this case the distribution D^{\prime} may not be integrable to satisfy the condition of a submersion. To overcome this challenge, we presume that the distribution D^{\prime} is integrable. Literature suggests the study of lightlike submersions has many applications across a variety of fields, and a very limited number of reports are available on this subject. This motivated us to introduce and investigate the concept of screen generic lightlike submersions.

This paper is organised as follows: In Section 2, we recall the basic theory of a lightlike submanifold given by Duggal et. al. [4]. In Section 3, after defining a screen generic lightlike submanifold, we review some basic theorems on integrability of distributions D and D^{\prime}. In Section 4, a screen generic lightlike submersion ϕ is defined from a screen generic lightlike submanifold K_{1} of an indefinite Kaehler manifold K_{2} onto an indefinite almost Hermitian manifold K^{\prime}. Furthermore, we prove that if an indefinite almost Hermitian manifold K^{\prime} admits a lightlike submersion $\phi: K_{1} \rightarrow K^{\prime}$ of a screen generic lightlike submanifold K_{1} of an indefinite Kaehler manifold K_{2} then K^{\prime} must be an indefinite Kaehler manifold. Also the relation between the holomorphic sectional curvature of K_{2} and that of K^{\prime} is established.

2. Preliminaries

2.1. Lightlike Submanifolds

Let $\left(K_{1}^{n}, g_{1}\right)$ be an isometrically immersed submanifold of a semi-Riemannian manifold $\left(K_{2}^{m+n}, g_{2}\right)$ of constant index q such that $m, n \geq 1,1 \leq q \leq m+n-1$. The metric g_{1} is the induced metric of g_{2} on $K_{1} . K_{1}$ is called a lightlike submanifold of K_{2} if the metric g_{1} becomes degenerate on the tangent bundle $T K_{1}$ of K_{1}. Locally, a lightlike vector field $\zeta \in \Gamma\left(T K_{1}\right), \zeta \neq\{0\}$ exists so that $g_{1}\left(\zeta, Y_{2}\right)=0$ for every $Y_{2} \in \Gamma\left(T K_{1}\right)$. Then, for each tangent space $T_{y} K_{1}$, we have

$$
T_{y} K_{1}^{\perp}=\cup\left\{u \in T_{y} K_{2}: g_{2}(u, v)=0, \forall v \in T_{y} K_{1}, y \in K_{1}\right\}
$$

where $T_{y} K_{1}$ is an n-dimensional degenerate subspace of $T_{y} K_{2}$. As a result, even though the subspaces $T y K_{1}$ and $T y K_{1}^{\perp}$ are no longer complimentary, i.e. $T_{y} K_{1} \cap T_{y} K_{1}^{\perp} \neq 0$, they are both degenerate and orthogonal. In this case, there exists a subspace $\operatorname{Rad}\left(T_{y} K_{1}\right)=T_{y} K_{1} \cap T_{y} K_{1}^{\perp}$, named as the radical subspace defined as:

$$
\operatorname{Rad}\left(T_{y} K_{1}\right)=\left\{\zeta_{y} \in T_{y} K_{1}: g_{1}\left(\zeta_{y}, Y_{2}\right)=0, \quad \forall Y_{2} \in T_{y} K_{1}\right\}
$$

$\operatorname{Rad}\left(T K_{1}\right)$ is known as the radical distribution on K_{1} and K_{1} is referred as an r-lightlike submanifold of K_{2}, if the mapping

$$
\operatorname{Rad}\left(T K_{1}\right): y \in K_{1} \longrightarrow \operatorname{Rad}\left(T_{y} K_{1}\right)
$$

defines a smooth distribution on K_{1} of rank $r>0$. For an r-lightlike submanifold K_{1}, we find $S\left(T K_{1}\right)$ is a complementary orthogonal vector subbundle to $\operatorname{Rad}\left(T K_{1}\right)$ in $T K_{1}$, which is a non-degenerate screen distribution. Thus, we can write

$$
\begin{equation*}
T K_{1}=\operatorname{Rad}\left(T K_{1}\right) \perp S\left(T K_{1}\right) . \tag{1}
\end{equation*}
$$

Since $S\left(T K_{1}\right)$ is canonically isomorphic to the vector bundle $T K_{1} / \operatorname{Rad}\left(T K_{1}\right)$, however, it is not unique. Let us use the notation

$$
\left(K_{1}, g, S\left(T K_{1}\right), S\left(T K_{1}^{\perp}\right)\right)
$$

to represent a r-lightlike submanifold, where $S\left(T K_{1}^{\perp}\right)$ is a complementary vector subbundle to $\operatorname{Rad}\left(T K_{1}\right)$ in $T K_{1}^{\perp}$.

Theorem 2.1. [4] For an r-lightlike submanifold

$$
\left(K_{1}, g, S\left(T K_{1}\right), S\left(T K_{1}^{\perp}\right)\right)
$$

of a semi-Riemannian manifold $\left(K_{2}, g_{2}\right)$, there exists a complementary vector bundle ltr $\left(T K_{1}\right)$ of $\operatorname{Rad}\left(T K_{1}\right)$ in $S\left(T K_{1}^{\perp}\right)^{\perp}$ and a basis of $\Gamma\left(\left.\operatorname{ltr}\left(T K_{1}\right)\right|_{u}\right)$ consisting of smooth sections $\left\{N_{i}\right\}$ of $\left.S\left(T K_{1}^{\perp}\right)^{\perp}\right|_{u}$, where u is a coordinate neighborhood of K_{1} such that

$$
g_{2}\left(N_{i}, N_{j}\right)=0, \quad g_{2}\left(N_{i}, \zeta_{j}\right)=\delta_{i j}, \text { for } \quad i, j \in\{1,2, . ., r\}
$$

where $\left\{\zeta_{1}, \ldots, \zeta_{r}\right\}$ is lightlike basis of $\Gamma\left(\operatorname{Rad}\left(T K_{1}\right)\right)$.
It follows that there exists a lightlike transversal vector bundle $\operatorname{ltr}\left(T K_{1}\right)$ locally spanned by $\left\{N_{i}\right\}$. Let $\operatorname{tr}\left(T K_{1}\right)$ and $\operatorname{ltr}\left(T K_{1}\right)$ be the vector bundles complementary (but not orthogonal) to $T K_{1}$ in $\left.T K_{2}\right|_{K_{1}}$ and to $\operatorname{Rad}\left(T K_{1}\right)$ in $S\left(T K_{1}^{\perp}\right)$, respectively. Then we have

$$
\begin{equation*}
\operatorname{tr}\left(T K_{1}\right)=\operatorname{ltr}\left(T K_{1}\right) \perp S\left(T K_{1}^{\perp}\right) \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
\left.T K_{2}\right|_{K_{1}}=T K_{1} \oplus \operatorname{tr}\left(T K_{1}\right) \tag{3}
\end{equation*}
$$

Let

$$
\left(K_{1}, g, S\left(T K_{1}\right), S\left(T K_{1}^{\perp}\right)\right)
$$

be an r-lightlike submanifold of a semi-Riemannian manifold $\left(K_{2}, g_{2}\right)$. Consider the Levi-Civita connection defined on K_{2} as $\bar{\nabla}$. The Gauss and Weingarten formulae are then derived by using the decomposition Eq. (2) as

$$
\begin{gathered}
\bar{\nabla}_{Y_{1}} Y_{2}=\nabla_{Y_{1}} Y_{2}+h\left(Y_{1}, Y_{2}\right), \\
\bar{\nabla}_{Y_{1}} V=-A_{V} Y_{1}+\nabla_{Y_{1}}^{t} V
\end{gathered}
$$

where $\left\{h\left(Y_{1}, Y_{2}\right), \nabla_{Y_{1}}^{t} V\right\}$ and $\left\{\nabla_{Y_{1}} Y_{2}, A_{V} Y_{1}\right\}$ belong to $\Gamma\left(\operatorname{tr}\left(T K_{1}\right)\right)$ and $\Gamma\left(T K_{1}\right)$, respectively. Here, h is a symmetric bilinear second fundamental form on $\Gamma\left(T K_{1}\right)$ and A_{V} is linear shape operator on K_{1}. In view of Eq. (3), the Gauss and Weingarten formulae become

$$
\begin{gather*}
\bar{\nabla}_{Y_{1}} Y_{2}=\nabla_{Y_{1}} Y_{2}+h^{l}\left(Y_{1}, Y_{2}\right)+h^{s}\left(Y_{1}, Y_{2}\right) \tag{4}\\
\bar{\nabla}_{Y_{1}} N=-A_{N} Y_{1}+\nabla_{Y_{1}}^{l} N+D^{s}\left(Y_{1}, N\right) \tag{5}\\
\bar{\nabla}_{Y_{1}} V=-A_{V} Y_{1}+D^{l}\left(Y_{1}, V\right)+\nabla_{Y_{1}}^{s} V \tag{6}
\end{gather*}
$$

where $Y_{1}, Y_{2} \in \Gamma\left(T K_{1}\right), N \in \Gamma\left(l t r\left(T K_{1}\right)\right)$ and $V \in \Gamma\left(S\left(T K_{1}^{\perp}\right)\right)$. Further by employing Eqs. (4)-(6), we derive

$$
\begin{gather*}
g_{1}\left(A_{V} Y_{1}, Y_{2}\right)=g_{2}\left(h^{s}\left(Y_{1}, Y_{2}\right), V\right)+g_{2}\left(Y_{2}, D^{l}\left(Y_{1}, V\right)\right), \tag{7}\\
g_{2}\left(D^{s}\left(Y_{1}, N\right), V\right)=g_{2}\left(A_{V} Y_{1}, N\right)
\end{gather*}
$$

If P is considered to be the projection morphism of $T K_{1}$ on $S\left(T K_{1}\right)$, then on the screen distribution $S\left(T K_{1}\right)$ of K_{1}, we can introduce few new geometric objects. Therefore as a result of employing Eq. (2), we have

$$
\nabla_{Y_{1}} P Y_{2}=\nabla_{Y_{1}}^{*} P Y_{2}+h^{*}\left(Y_{1}, Y_{2}\right), \quad \nabla_{Y_{1}} \zeta=-A_{\zeta}^{*} Y_{1}+\nabla_{Y_{1}}^{* t} \zeta
$$

for any $Y_{1}, Y_{2} \in \Gamma\left(T K_{1}\right)$ and $\zeta \in \Gamma\left(\operatorname{Rad}\left(T K_{1}\right)\right)$, where $\left\{\nabla_{Y_{1}}^{*} P Y_{2}, A_{\zeta}^{*} Y_{1}\right\}$ and $\left\{h^{*}\left(Y_{1}, Y_{2}\right), \nabla_{Y_{1}}^{* t} \zeta\right\}$ belong to $\Gamma\left(S\left(T K_{1}\right)\right)$ and $\Gamma\left(\operatorname{Rad}\left(T K_{1}\right)\right)$, respectively. Using Eqs. (4), (5) and (6), we obtain

$$
g_{2}\left(h^{l}\left(Y_{1}, P Y_{2}\right), \zeta\right)=g_{1}\left(A_{\zeta}^{*} Y_{1}, P Y_{2}\right), g_{2}\left(h^{*}\left(Y_{1}, P Y_{2}\right), N\right)=g_{1}\left(A_{N} Y_{1}, P Y_{2}\right)
$$

for any $Y_{1}, Y_{2} \in \Gamma\left(T K_{1}\right), \zeta \in \Gamma\left(\operatorname{Rad}\left(T K_{1}\right)\right)$ and $N \in \Gamma\left(l \operatorname{tr}\left(T K_{1}\right)\right)$.
Next, consider $\bar{\nabla}$ is a metric connection and using Eqs. (4) - (6), for $Y_{1}, Y_{2}, X \in$ $\Gamma\left(T K_{1}\right)$ and $V_{1}, V_{2} \in \Gamma\left(\operatorname{tr}\left(T K_{1}\right)\right)$, we obtain

$$
\left(\nabla_{Y_{1}} g_{2}\right)\left(Y_{2}, X\right)=g_{2}\left(h^{l}\left(Y_{1}, Y_{2}\right), X\right)+g_{2}\left(h^{l}\left(Y_{1}, X\right), Y_{2}\right)
$$

and

$$
\left(\nabla_{Y_{1}}^{t} g_{2}\right)\left(V_{1}, V_{2}\right)=-g_{2}\left(A_{V_{1}} Y_{1}, V_{2}\right)-g_{2}\left(A_{V_{2}} Y_{1}, V_{1}\right)
$$

which implies that the transversal linear connection ∇^{t} on $\operatorname{tr}\left(T K_{1}\right)$ and the induced linear connection ∇ on K_{1} are generally not the metric connections.

Let \bar{R} and R denote the curvature tensors of $\bar{\nabla}$ and ∇, respectively. Then we have

$$
\begin{aligned}
\bar{R}\left(Y_{1}, Y_{2}\right) X= & R\left(Y_{1}, Y_{2}\right) X+A_{h^{l}\left(Y_{1}, X\right)} Y_{2}-A_{h^{l}\left(Y_{2}, X\right)} Y_{1}+A_{h^{s}\left(Y_{1}, X\right)} Y_{2} \\
& +A_{h^{s}\left(Y_{2}, X\right)} Y_{1}+\left(\nabla_{Y_{1}} h^{l}\right)\left(Y_{2}, X\right)-\left(\nabla_{Y_{2}} h^{l}\right)\left(Y_{1}, X\right) \\
& +D^{l}\left(Y_{1}, h^{s}\left(Y_{2}, X\right)\right)-D^{l}\left(Y_{2}, h^{s}\left(Y_{1}, X\right)\right) \\
& +\left(\nabla_{Y_{1}} h^{s}\right)\left(Y_{2}, X\right)-\left(\nabla_{Y_{2}} h^{s}\right)\left(Y_{1}, X\right)+D^{s}\left(Y_{1}, h^{l}\left(Y_{2}, X\right)\right) \\
& -D^{s}\left(Y_{2}, h^{l}\left(Y_{1}, X\right)\right),
\end{aligned}
$$

where

$$
\begin{aligned}
& \qquad \begin{array}{l}
\left(\nabla_{Y_{1}} h^{s}\right)\left(Y_{2}, X\right)=\nabla_{Y_{1}}^{s} h^{s}\left(Y_{2}, X\right)-h^{s}\left(\nabla_{Y_{1}} Y_{2}, X\right)-h^{s}\left(Y_{2}, \nabla_{Y_{1}} X\right), \\
\left(\nabla_{Y_{1}} h^{l}\right)\left(Y_{2}, X\right)=\nabla_{Y_{1}}^{l} h^{l}\left(Y_{2}, X\right)-h^{l}\left(\nabla_{Y_{1}} Y_{2}, X\right)-h^{l}\left(Y_{2}, \nabla_{Y_{1}} X\right), \\
\text { for } Y_{1}, Y_{2}, X \in \Gamma\left(T K_{1}\right)
\end{array}
\end{aligned}
$$

2.2. Indefinite Kaehler Manifold

Definition 2.2. [1] Let K_{2} be an indefinite almost Hermitian manifold, \bar{J} be an almost complex structure of the type $(1,1)$ with Hermitian metric g_{2} such that for $Y_{1}, Y_{2} \in \Gamma\left(T K_{2}\right)$, we have

$$
\begin{equation*}
\bar{J}^{2}=-I, \quad g_{2}\left(\bar{J} Y_{1}, \bar{J} Y_{2}\right)=g_{2}\left(Y_{1}, Y_{2}\right) \tag{9}
\end{equation*}
$$

If $\bar{\nabla}$ is considered to be a Levi-Civita connection of K_{2} with respect to g_{2}, then the covariant derivative of \bar{J} is defined by

$$
\begin{equation*}
\left(\bar{\nabla}_{Y_{1}} \bar{J}\right) Y_{2}=\bar{\nabla}_{Y_{1}} \bar{J} Y_{2}-\bar{J} \bar{\nabla}_{Y_{1}} Y_{2} \tag{10}
\end{equation*}
$$

for any $Y_{1}, Y_{2} \in \Gamma\left(T K_{2}\right)$. Then K_{2} is called an indefinite Kaehler manifold, if

$$
\begin{equation*}
\left(\bar{\nabla}_{Y_{1}} \bar{J}\right) Y_{2}=0 \tag{11}
\end{equation*}
$$

for each $Y_{1}, Y_{2} \in \Gamma\left(T K_{2}\right)$.

3. Screen Generic Lightlike Submanifold

Definition 3.1. [3] Suppose that K_{2} is an indefinite Kaehler manifold and K_{1} is a real r-lightlike submanifold of K_{2}. Then we say that K_{1} is a screen lightlike submanifold of K_{2} if the following conditions are satisfied:
(A) $\operatorname{Rad}\left(T K_{1}\right)$ is invariant with respect to \bar{J}, that is,

$$
\bar{J}\left(\operatorname{Rad}\left(T K_{1}\right)\right)=\operatorname{Rad}\left(T K_{1}\right)
$$

(B) There exists a subbundle D_{0} of $S\left(T K_{1}\right)$ such that

$$
D_{0}=\bar{J}\left(S\left(T K_{1}\right)\right) \cap S\left(T K_{1}\right),
$$

where D_{0} is a non-degenerate distribution on K_{1}.

We observe that there exists a complementary non-degenerate distribution D^{\prime} in $S\left(T K_{1}\right)$ such that

$$
S\left(T K_{1}\right)=D_{0} \oplus D^{\prime},
$$

where

$$
\bar{J}\left(D^{\prime}\right) \nsubseteq S\left(T K_{1}\right) \quad \text { and } \quad \bar{J}\left(D^{\prime}\right) \nsubseteq S\left(T K_{1}^{\perp}\right)
$$

Let P_{0}, P_{1}, and Q be the projection morphism on $D_{0}, \operatorname{Rad}\left(T K_{1}\right)$ and D^{\prime}, respectively. Then for each $Y_{1} \in \Gamma\left(T K_{1}\right)$, we have

$$
\begin{align*}
Y_{1} & =P_{0} Y_{1}+P_{1} Y_{1}+Q Y_{1} \\
& =P Y_{1}+Q Y_{1}, \tag{12}
\end{align*}
$$

where $D=D_{0} \perp \operatorname{Rad}\left(T K_{1}\right), D$ is invariant and $P Y_{1} \in \Gamma(D), Q Y_{1} \in \Gamma\left(D^{\prime}\right)$. From Eq. (12), we have

$$
\bar{J} Y_{1}=f Y_{1}+\omega Y_{1}
$$

where $f Y_{1}$ and ωY_{1} are the tangential and transversal component of $\bar{J} Y_{1}$ respectively. Moreover it is obvious that $\bar{J}\left(D^{\prime}\right) \neq D^{\prime}$. Whereas, for vector field $Y_{2} \in \Gamma\left(D^{\prime}\right)$, we have

$$
\bar{J} Y_{2}=f Y_{2}+\omega Y_{2},
$$

such that $f Y_{2} \in \Gamma\left(D^{\prime}\right)$ and $\omega Y_{2} \in \Gamma\left(S\left(T K_{1}^{\perp}\right)\right.$. In the same way for $V_{1} \in$ $\Gamma\left(\operatorname{tr}\left(T K_{1}\right)\right)$, we have

$$
\begin{equation*}
\bar{J} V_{1}=E V_{1}+F V_{1}, \tag{13}
\end{equation*}
$$

where $E V_{1}$ is the tangential part and $F V_{1}$ is the transversal part of $\bar{J} V_{1}$, respectively. Next, we recall the conditions for the integrability of the distributions D_{0}, D and D^{\prime} associated with a screen generic lightlike submanifold.

Theorem 3.2. [3] Suppose that K_{2} is an indefinite Kaehler manifold and K_{1} is a real r-lightlike submanifold of K_{2}. Then the distribution D_{0} is integrable if and only if the following conditions hold:

$$
\begin{equation*}
g_{1}\left(\nabla_{Y_{1}}^{*} \bar{J} Y_{2}-\nabla_{Y_{2}}^{*} \bar{J} Y_{1}, f Z\right)=g_{1}\left(E\left(h^{s}\left(Y_{1}, \bar{J} Y_{2}\right)-h^{s}\left(Y_{2}, \bar{J} Y_{1}\right)\right), Z\right) \tag{14}
\end{equation*}
$$

and

$$
h^{*}\left(Y_{1}, \bar{J} Y_{2}\right)=h^{*}\left(Y_{2}, \bar{J} Y_{1}\right),
$$

for each $Y_{1}, Y_{2} \in \Gamma\left(D_{0}\right)$ and $Z \in \Gamma\left(D^{\prime}\right)$. Further, the distribution D is integrable if and only if Eq. (14) holds for each $Y_{1}, Y_{2} \in \Gamma(D), Z \in \Gamma\left(D^{\prime}\right)$.

Theorem 3.3. [3] Let K_{2} be an indefinite Kaehler manifold and let K_{1} be a real r-lightlike submanifold of K_{2}. Then the distribution D^{\prime} is integrable if and only if

$$
\begin{equation*}
\nabla_{Z} f V-\nabla_{V} f Z-A_{\omega V} Z+A_{\omega Z} V \in \Gamma\left(D^{\prime}\right) \tag{15}
\end{equation*}
$$

for each $Z, V \in \Gamma\left(D^{\prime}\right)$.

Definition 3.4. [5] A lightlike submanifold $\left(K_{1}, g\right)$ of a semi-Riemannian manifold $\left(K_{2}, g_{2}\right)$ is totally umbilical in K_{2} if there is a smooth transversal vector field $H \in \Gamma\left(l \operatorname{tr}\left(T K_{1}\right)\right)$ on K_{1}, called the transversal curvature vector field of K_{1}, such that, for each $Y_{1}, Y_{2} \in \Gamma\left(T K_{1}\right)$,

$$
\begin{equation*}
h\left(Y_{1}, Y_{2}\right)=H g_{1}\left(Y_{1}, Y_{2}\right) \tag{16}
\end{equation*}
$$

It is clear from the Gauss and Weingarten formulae (4) of K_{2} that K_{1} is totally umbilical if and only if there are smooth vector fields $H^{l} \in \Gamma\left(l \operatorname{tr}\left(T K_{1}\right)\right)$ and $H^{s} \in \Gamma\left(S\left(T K_{1}^{\perp}\right)\right)$ in each coordinate neighbourhood U , such that

$$
h^{l}\left(Y_{1}, Y_{2}\right)=H^{l} g_{1}\left(Y_{1}, Y_{2}\right), D^{l}\left(Y_{1}, W\right)=0, h^{s}\left(Y_{1}, Y_{2}\right)=H^{s} g_{1}\left(Y_{1}, Y_{2}\right)
$$

for each $Y_{1}, Y_{2} \in \Gamma\left(T K_{1}\right)$ and $W \in \Gamma\left(S\left(T K_{1}^{\perp}\right)\right)$.
Theorem 3.5. Suppose that K_{2} is an indefinite Kaehler manifold and K_{1} is a totally umbilical screen generic lightlike submanifold of K_{2}. Then $H^{l}=0$.

Proof. For $Y_{1}, Y_{2} \in \Gamma\left(D_{0}\right)$, using Eq. (11) along with the hypothesis and then considering the lightlike transversal components, we get

$$
H^{l} g_{1}\left(Y_{1}, J Y_{2}\right)=C H^{l} g_{1}\left(Y_{1}, Y_{2}\right)
$$

Taking $Y_{1}=J Y_{2}$ and in view of the non-degeneracy of D_{0}, above equation yields that $H^{l}=0$.

4. Screen Generic Lightlike Submersion

Definition 4.1. Assume that K_{2} is an indefinite Kaehler manifold and $\left(K_{1}, g_{1}, D\right)$ is a screen generic lightlike submanifold of K_{2} such that D^{\prime} is integrable and $\left(K^{\prime}, g_{2}\right)$ is an indefinite almost Hermitian manifold. Then a smooth mapping $\phi:\left(K_{1}, g_{1}, D\right) \rightarrow\left(K^{\prime}, g_{2}\right)$ is called a lightlike submersion if
(a) at each $p \in K_{1}, \mathcal{V}_{p}=\operatorname{ker}\left(\phi_{*}\right)_{p}=D^{\prime}$,
(b) at every $p \in K_{1}$, the differential operator ϕ_{*} restricts to an isometry of the horizontal space $\mathcal{H}_{p}=D_{p}$ onto $T_{\phi(p)} K^{\prime}$, that is

$$
g_{1}\left(Y_{1}, Y_{2}\right)=g_{2}\left(\phi_{*}\left(Y_{1}\right), \phi_{*}\left(Y_{2}\right)\right)
$$

for any given vector fields $Y_{1}, Y_{2} \in \Gamma(D)$.
The restriction of $\phi_{* p}$ to $\mathcal{H}_{p}=S\left(T K_{1}\right)_{p}$ maps the space isomorphically onto $T_{\phi(p)} K^{\prime}$, as the definition implies. Then for any vector $\tilde{Y}_{1} \in T_{\phi(p)} K^{\prime}$, we note that the vector $Y_{1} \in S\left(T K_{1}\right)_{p}$ is a horizontal lift of \tilde{Y}_{1}. On the other hand, if \tilde{Y}_{1} is a vector field on an open set U of K^{\prime} then the horizontal lift \tilde{Y}_{1} is the vector field $Y_{1} \in \Gamma\left(S\left(T K_{1}\right)\right)$ on $\phi^{-1}(U)$ such that $\phi_{*}\left(Y_{1}\right)=\tilde{Y}_{1} o \phi$ and is called the basic vector field.

Lemma 4.2. Consider a screen generic lightlike submersion $\phi: K_{1} \rightarrow K^{\prime}$ defined from a screen generic lightlike submanifold of an indefinite Kaehler manifold K_{2} onto an indefinite almost hermitian manifold K^{\prime}. If Y_{1} and Y_{2} are basic vector field ϕ-related to $\tilde{Y}_{1}, \tilde{Y}_{2}$, respectively, then
(i) $g_{1}\left(Y_{1}, Y_{2}\right)=g_{2}\left(\tilde{Y}_{1}, \tilde{Y}_{2}\right) o \phi$.
(ii) $\left[Y_{1}, Y_{2}\right]^{\mathcal{H}}$ is the basic vector field and ϕ-related to $\left[\tilde{Y}_{1}, \tilde{Y}_{2}\right]$.
(iii) $\left(\nabla_{Y_{1}}^{K_{1}} Y_{2}\right)^{\mathcal{H}}$ is a basic vector field and ϕ-related to $\left(\tilde{\nabla}_{\tilde{Y}_{1}}^{K^{\prime}} \tilde{Y}_{2}\right)$.
(iv) For any vertical vector field $V,\left[Y_{1}, V\right]$ is vertical.

Proof. If Y_{1} and Y_{2} are the basic vector fields of K_{1}, then (i) obviously follows from part (b) of the definition (4.1). Given that P and Q are projections from $T K_{1}$ on the distribution of a screen generic lightlike submanifold of an indefinite Kaehler manifold, D and D^{\prime}, respectively, then $\left[Y_{1}, Y_{2}\right]=P\left[Y_{1}, Y_{2}\right]+$ $Q\left[Y_{1}, Y_{2}\right]$. Since, the horizontal component of $\left[Y_{1}, Y_{2}\right]$ which is $P\left[Y_{1}, Y_{2}\right]$ is a basic vector field and correspond to $\left[\tilde{Y}_{1}, \tilde{Y}_{2}\right]$, that is

$$
\phi_{*}\left(P\left[Y_{1}, Y_{2}\right]\right)=\left[\phi_{*}\left(Y_{1}\right), \phi_{*}\left(Y_{2}\right)\right],
$$

Then from Koszul's formula, we have

$$
\begin{align*}
2 g_{1}\left(\nabla_{Y_{1}} Y_{2}, Z\right)= & Y_{1}\left(g_{1}\left(Y_{2}, Z\right)\right)+Y_{2}\left(g_{1}\left(Z, Y_{1}\right)\right)-Z\left(g_{1}\left(Y_{1}, Y_{2}\right)\right) \\
& -g_{1}\left(Y_{1},\left[Y_{2}, Z\right]\right)+g_{1}\left(Y_{2},\left[Z, Y_{1}\right]\right)+g_{1}\left(Z,\left[Y_{1}, Y_{2}\right]\right) \tag{17}
\end{align*}
$$

for any $Y_{1}, Y_{2}, Z \in \Gamma(D)$.
Let Y_{1}, Y_{2}, and Z be the horizontal lifts of the vector fields $\tilde{Y}_{1}, \tilde{Y}_{2}$, and \tilde{Z}, respectively. Then $Y_{1}\left(g_{1}\left(Y_{2}, Z\right)=\tilde{Y}_{1}\left(g_{2}\left(\tilde{Y}_{2}, \tilde{Z}\right) o \phi\right.\right.$ and

$$
g_{1}\left(Z,\left[Y_{1}, Y_{2}\right]\right)=g_{2}\left(\tilde{Z},\left[\tilde{Y}_{1}, \tilde{Y}_{2}\right]\right) o \phi
$$

Thus from Eq. (17) we obtain

$$
\begin{align*}
2 g_{1}\left(\nabla_{Y_{1}}^{K_{1}} Y_{2}, Z\right)= & \tilde{Y}_{1}\left(g_{2}\left(\tilde{Y}_{2}, \tilde{Z}\right) o \phi+\tilde{Y}_{2}\left(g_{2}\left(\tilde{Z}, \tilde{Y}_{1}\right) o \phi-\tilde{Z}\left(g_{2}\left(\tilde{Y}_{1}, \tilde{Y}_{2}\right)\right.\right.\right. \\
& o \phi-g_{2}\left(\tilde{Y}_{1},\left[\tilde{Y}_{2}, \tilde{Z}\right]\right) o \phi+g_{2}\left(\tilde{Y}_{2},\left[\tilde{Z}, \tilde{Y}_{1}\right]\right) o \phi \\
& +g_{2}\left(\tilde{Z},\left[\tilde{Y}_{1}, \tilde{Y}_{2}\right]\right) o \phi \\
= & 2 g_{2}\left(\nabla_{\tilde{Y}_{1}}^{K_{1}^{\prime}} \tilde{Y}_{2}, \tilde{Z}\right) . \tag{18}
\end{align*}
$$

Given that \tilde{Z} is an arbitrary vector field and ϕ is surjective, therefore condition (iii) follows from Eq.(18). Next, let $\mathrm{V} \in \Gamma\left(D^{\prime}\right)$ then $\left[Y_{1}, V\right]$ is ϕ related to $\left[\tilde{Y}_{1}, 0\right]$, which proves (iv) and this concludes the proof.

Let $\nabla^{K^{\prime}}$ be the covariant differentiation on K^{\prime}. Then we define corresponding operator $\tilde{\nabla}^{K^{\prime}}$ by assuming

$$
\tilde{\nabla}_{Y_{1}}^{K_{1}^{\prime}} Y_{2}=\left(\tilde{\nabla}_{Y_{1}}^{K_{1}} Y_{2}\right)^{\mathcal{H}}
$$

for any basic vector field Y_{1} and Y_{2}. Thus from (iii) of Lemma (4.2), $\tilde{\nabla}_{Y_{1}}^{K_{1}^{\prime}} Y_{2}$ is a basic vector field and $\phi_{*}\left(\nabla_{Y_{1}}^{K^{\prime}} Y_{2}\right)=\phi_{*}\left(\tilde{\nabla}_{Y_{1}}^{K^{\prime}} Y_{2}\right)=\tilde{\nabla}_{\tilde{Y}_{1}}^{K_{1}^{\prime}} \tilde{Y}_{2}$. Thus we have a
tensor field C, using Eq. (12) as

$$
\begin{equation*}
\nabla_{Y_{1}}^{K_{1}} Y_{2}=\tilde{\nabla}_{Y_{1}}^{K_{1}^{\prime}} Y_{2}+C\left(Y_{1}, Y_{2}\right) \tag{19}
\end{equation*}
$$

for any $Y_{1}, Y_{2} \in \Gamma(D)$, where $C\left(Y_{1}, Y_{2}\right)$ denote the vertical part of $\nabla_{Y_{1}}^{K_{1}} Y_{2}$. It is easy to check that C is a billinear map from $D \times D \rightarrow D^{\prime}$.

Lemma 4.3. The tensor field C is skew-symmetric and satisfies

$$
C\left(Y_{1}, Y_{2}\right)=\frac{1}{2} \mathcal{V}\left[Y_{1}, Y_{2}\right]
$$

Proof. Let $Z \in \Gamma\left(D^{\prime}\right)$ be any vertical vector field. Then, for any $Y_{1} \in \Gamma(D)$ consider $\left(\bar{\nabla}_{Z} g_{2}\right)\left(Y_{1}, Y_{1}\right)=0$, which further implies

$$
\begin{aligned}
0 & =Z g_{1}\left(Y_{1}, Y_{1}\right)=2 g_{2}\left(\bar{\nabla}_{Z} X, Y_{1}\right) \\
& =2 g_{1}\left(\nabla_{Z}^{K_{1}} Y_{1}, Y_{1}\right)=2 g_{1}\left(\nabla_{Y_{1}}^{K_{1}} Z-\left[Y_{1}, Z\right], Y_{1}\right) \\
& =2 g_{1}\left(\nabla_{Y_{1}}^{K_{1}} Z, Y_{1}\right)=-2 g_{1}\left(Z, \nabla_{Y_{1}}^{K_{1}} Y_{1}\right)=-2 g_{1}\left(Z, \tilde{\nabla}_{Y_{1}}^{K_{1}^{\prime}} Y_{1}+C\left(Y_{1}, Y_{1}\right)\right) \\
& =-2 g_{1}\left(Z, C\left(Y_{1}, Y_{1}\right)\right)
\end{aligned}
$$

Since D^{\prime} is non-degenerate distribution, $g_{1}\left(Z, C\left(Y_{1}, Y_{1}\right)\right)=0$ if and only if $C\left(Y_{1}, Y_{1}\right)=0$, that is, if and only if, C is skew-symmetric. Also for $Y_{1}, Y_{2} \in$ $\Gamma(D)$, we have

$$
\begin{aligned}
{\left[Y_{1}, Y_{2}\right]=} & \nabla_{Y_{1}}^{K_{1}} Y_{2}-\nabla_{Y_{2}}^{K_{1}} Y_{1}=\left(\tilde{\nabla}_{Y_{1}}^{K^{\prime}} Y_{2}-\tilde{\nabla}_{Y}^{K^{\prime}} Y_{1}\right)+C\left(Y_{1}, Y_{2}\right) \\
& -C\left(Y_{2}, Y_{1}\right) \\
= & \left(\tilde{\nabla}_{Y_{1}}^{K^{\prime}} Y_{2}-\tilde{\nabla}_{Y}^{K^{\prime}} Y_{1}\right)+2 C\left(Y_{1}, Y_{2}\right)
\end{aligned}
$$

On comparing the vertical components on both sides, we get

$$
\begin{equation*}
C\left(Y_{1}, Y_{2}\right)=\frac{1}{2} \mathcal{V}\left[Y_{1}, Y_{2}\right] \tag{20}
\end{equation*}
$$

Next we define a new tensor field T as

$$
\begin{equation*}
\nabla_{Y_{1}}^{K_{1}} Z=T_{Y_{1}} Z+\left(\nabla_{Y_{1}}^{K_{1}} Z\right)^{\mathcal{V}} \tag{21}
\end{equation*}
$$

for any $Y_{1} \in \Gamma(D)$ and $Z \in \Gamma\left(D^{\prime}\right)$. Clearly, T is a bilinear map defined from $D \times D^{\prime} \rightarrow D$. Since $\left[Y_{1}, Z\right]=\nabla_{Y_{1}}^{K_{1}} Z-\nabla_{Z}^{K_{1}} Y_{1}$ is vertical, therefore we have

$$
\begin{equation*}
\mathcal{H}\left(\nabla_{Y_{1}}^{K_{1}} Z\right)=\mathcal{H}\left(\nabla_{Z}^{K_{1}} Y_{1}\right)=T_{Y_{1}} Z \tag{22}
\end{equation*}
$$

Lemma 4.4. For each $Y_{1}, Y_{2} \in \Gamma(D)$ and $Z \in \Gamma\left(D^{\prime}\right)$, we have

$$
\begin{equation*}
g_{1}\left(T_{Y_{1}} Z, Y_{2}\right)=-g_{1}\left(Z, C\left(Y_{1}, Y_{2}\right)\right) \tag{23}
\end{equation*}
$$

Proof. For each $Y_{1}, Y_{2} \in \Gamma(D), Z \in \Gamma\left(D^{\prime}\right)$ and using Eqs.(21) and (22), we have

$$
\begin{aligned}
g_{1}\left(T_{Y_{1}} Z, Y_{2}\right) & =g_{1}\left(\nabla_{Y_{1}}^{K_{1}} Z, Y_{2}\right)=g_{1}\left(\bar{\nabla}_{Y_{1}} Z, Y_{2}\right)=-g_{1}\left(Z, \bar{\nabla}_{Y_{1}} Y_{2}\right) \\
& =-g_{1}\left(Z, \nabla_{Y_{1}} Y_{2}\right)=-g_{1}\left(Z, \tilde{\nabla}_{Y_{1}}^{K^{\prime}} Y_{2}+C\left(Y_{1}, Y_{2}\right)\right) \\
& =-g_{1}\left(Z, C\left(Y_{1}, Y_{2}\right)\right) .
\end{aligned}
$$

Thus, the result follows.
Theorem 4.5. Suppose that K_{2} is an indefinite Kaehler manifold and K_{1} is a screen generic lightlike submanifold of K_{2}. If a screen generic lightlike submersion $\phi: K_{1} \rightarrow K^{\prime}$ is defined from K_{1} onto an indefinite almost Hermitian manifold K^{\prime} such that D^{\prime} is integrable, then K^{\prime} is necessarily an indefinite Kaehler manifold.

Proof. Let $Y_{1}, Y_{2} \in \Gamma(D)$ be basic vector fields. Then from Eqs. (4) and (19), we have

$$
\begin{equation*}
\bar{\nabla}_{Y_{1}} Y_{2}=\tilde{\nabla}_{Y_{1}}^{K_{1}^{\prime}} Y_{2}+C\left(Y_{1}, Y_{2}\right)+h^{l}\left(Y_{1}, Y_{2}\right)+h^{s}\left(Y_{1}, Y_{2}\right) \tag{24}
\end{equation*}
$$

Applying \bar{J} in Eq. (24), we get

$$
\begin{align*}
\bar{J} \bar{\nabla}_{Y_{1}} Y_{2}= & \bar{J} \tilde{\nabla}_{Y_{1}}^{K^{\prime}} Y_{2}+\bar{J} C\left(Y_{1}, Y_{2}\right)+\bar{J} h^{l}\left(Y_{1}, Y_{2}\right)+\bar{J} h^{s}\left(Y_{1}, Y_{2}\right), \\
= & \bar{J} \tilde{\nabla}_{Y_{1}}^{K_{1}^{\prime}} Y_{2}+f C\left(Y_{1}, Y_{2}\right)+\omega C\left(Y_{1}, Y_{2}\right)+\bar{J} h^{l}\left(Y_{1}, Y_{2}\right) \\
& +f h^{s}\left(Y_{1}, Y_{2}\right) . \tag{25}
\end{align*}
$$

On replacing Y_{2} by $\bar{J} Y_{2}$ in Eq. (24), we get

$$
\begin{equation*}
\bar{\nabla}_{Y_{1}} \bar{J} Y_{2}=\tilde{\nabla}_{Y_{1}}^{K^{\prime}} \bar{J} Y_{2}+C\left(Y_{1}, \bar{J} Y_{2}\right)+h^{l}\left(Y_{1}, \bar{J} Y_{2}\right)+h^{s}\left(Y_{1}, \bar{J} Y_{2}\right) \tag{26}
\end{equation*}
$$

Since K_{2} is an indefinite Kaehler manifold, therefore we have

$$
\bar{\nabla}_{Y_{1}} \bar{J} Y_{2}=\bar{J} \bar{\nabla}_{Y_{1}} Y_{2} .
$$

Then from Eqs. (25) and (26), we acquire

$$
\begin{aligned}
& \tilde{\nabla}_{Y_{1}}^{K^{\prime}} \bar{J} Y_{2}+C\left(Y_{1}, \bar{J} Y_{2}\right)+h^{l}\left(Y_{1}, \bar{J} Y_{2}\right)+h^{s}\left(Y_{1}, \bar{J} Y_{2}\right) \\
& =\bar{J} \tilde{\nabla}_{Y_{1}}^{K_{1}^{\prime}} Y_{2}+f C\left(Y_{1}, Y_{2}\right)+\omega C\left(Y_{1}, Y_{2}\right)+\bar{J} h^{l}\left(Y_{1}, Y_{2}\right)+f h^{s}\left(Y_{1}, Y_{2}\right)
\end{aligned}
$$

On comparing the components of horizontal, vertical and normal vector fields, we get

$$
\begin{gather*}
\tilde{\nabla}_{Y_{1}}^{K^{\prime}} \bar{J} Y_{2}=\bar{J} \tilde{\nabla}_{Y_{1}}^{K^{\prime}} Y_{2}, \tag{27}\\
C\left(Y_{1}, \bar{J} Y_{2}\right)=f C\left(Y_{1}, Y_{2}\right)+f h^{s}\left(Y_{1}, Y_{2}\right), \tag{28}\\
h^{l}\left(Y_{1}, \bar{J} Y_{2}\right)=\bar{J} h^{l}\left(Y_{1}, Y_{2}\right), \tag{29}\\
h^{s}\left(Y_{1}, \bar{J} Y_{2}\right)=\omega C\left(Y_{1}, Y_{2}\right) \tag{30}
\end{gather*}
$$

From Eq. (27), we have $\tilde{\nabla}_{Y_{1}}^{K^{\prime}} \bar{J} Y_{2}=\bar{J} \tilde{\nabla}_{Y_{1}}^{K^{\prime}} Y_{2}$ that is $\left(\tilde{\nabla}_{Y_{1}}^{K^{\prime}} \bar{J}\right) Y_{2}=0$, which proves that K^{\prime} is also an indefinite Kaehler manifold.

Corollary 4.6. If $\phi: K_{1} \rightarrow K^{\prime}$ is a submersion of screen generic lightlike submanifold of an indefinite Kaehler manifold onto an indefinite almost Hermitian manifold such that D^{\prime} is integrable, then

$$
C\left(Y_{1}, \bar{J} Y_{2}\right)+h\left(Y_{1}, \bar{J} Y_{2}\right)=\bar{J} C\left(Y_{1}, Y_{2}\right)+\bar{J} h\left(Y_{1}, Y_{2}\right)
$$

Proposition 4.7. Suppose that K_{2} is an indefinite Kaehler manifold and K_{1} is a totally umbilical screen generic lightlike submanifold of K_{2}. If K^{\prime} is an indefinite Kaehler manifold such that $\phi: K_{1} \rightarrow K^{\prime}$ is a lightlike submersion from K_{1} onto K^{\prime}, then

$$
T_{\bar{J} Y_{1}} V=\bar{J} T_{Y_{1}} V
$$

for each $Y_{1} \in \Gamma(D), V \in \Gamma\left(D^{\prime}\right)$.
Proof. Let Y_{1} be a basic vector field, $Y_{2} \in \Gamma(D), V \in \Gamma\left(D^{\prime}\right)$. Then we have

$$
\begin{aligned}
g_{1}\left(T_{\bar{J} Y_{1}} V, Y_{2}\right) & =g_{1}\left(\mathcal{H}\left(\nabla_{\bar{J} Y_{1}} V\right), Y_{2}\right)=g_{1}\left(\nabla_{\bar{J} Y_{1}} V, Y_{2}\right) \\
& =g_{1}\left(\left[\bar{J} Y_{1}, V\right]+\nabla_{V} \bar{J} Y_{1}, Y_{2}\right) \\
& =g_{1}\left(\nabla_{V} \bar{J} Y_{1}, Y_{2}\right)=g_{1}\left(\bar{\nabla}_{V} \bar{J} Y_{1}, Y_{2}\right) \\
& =g_{1}\left(\bar{J} \bar{\nabla}_{V} Y_{1}, Y_{2}\right)=-g_{1}\left(\bar{\nabla}_{V} Y_{1}, \bar{J} Y_{2}\right) \\
& =-g_{1}\left(\nabla_{V} Y_{1}, \bar{J} Y_{2}\right)=-g_{1}\left(T_{V} Y_{1}, \bar{J} Y_{2}\right) \\
& =g_{1}\left(\bar{J} T_{V} Y_{1}, Y_{2}\right) .
\end{aligned}
$$

Then using non-degeneracy of D_{0} in $S\left(T K_{1}\right)$, we have $T_{\bar{J} Y_{1}} V=\bar{J} T_{Y_{1}} V$.
Proposition 4.8. Assume that K_{2} is an indefinite Kaehler manifold and K_{1} is a totally umbilical screen generic lightlike submanifold of K_{2}. If K^{\prime} is an indefinite Kaehler manifold such that $\phi: K_{1} \rightarrow K^{\prime}$ is a lightlike submersion from K_{1} onto K^{\prime}, then we have $C\left(\bar{J} Y_{1}, \bar{J} Y_{2}\right)=C\left(Y_{1}, Y_{2}\right)$.

Proof. For $Y_{1}, Y_{2} \in \Gamma(D), V \in \Gamma\left(D^{\prime}\right)$ and using Lemma (4.4) and Eq. (22), we have

$$
\begin{aligned}
g_{1}\left(V, C\left(\left(\bar{J} Y_{1}, \bar{J} Y_{2}\right)\right)\right. & =-g_{1}\left(T_{\bar{J} Y_{1}} V, \bar{J} Y_{2}\right)=-g_{1}\left(\bar{J} T_{V} Y_{1}, \bar{J} Y_{2}\right) \\
& =-g_{1}\left(T_{V} Y_{1}, Y_{2}\right)=-g_{1}\left(T_{Y_{1}} V, Y_{2}\right) \\
& =g_{1}\left(V, C\left(Y_{1}, Y_{2}\right)\right) .
\end{aligned}
$$

Then using the non-degeneracy of D^{\prime}, we have $C\left(\bar{J} Y_{1}, \bar{J} Y_{2}\right)=C\left(Y_{1}, Y_{2}\right)$.
Corollary 4.9. For horizontal vector field Y_{1} and Y_{2}, we have

$$
C\left(Y_{1}, \bar{J} Y_{2}\right)=-C\left(\bar{J} Y_{1}, Y_{2}\right)
$$

Now for $U, V \in \Gamma\left(D^{\prime}\right)$, we define L by

$$
\begin{equation*}
\nabla_{U} V=L(U . V)+\hat{\nabla}_{U} V \tag{31}
\end{equation*}
$$

where $L(U, V)=\mathcal{H}\left(\nabla_{U} V\right), \hat{\nabla}_{U} V=\mathcal{V}\left(\nabla_{U} V\right)$. For $V \in \Gamma\left(D^{\prime}\right), Y_{1} \in \Gamma(D)$, define \mathcal{A} as

$$
\begin{equation*}
\nabla_{V} Y_{1}=\mathcal{H}\left(\nabla_{U} Y_{1}\right)+\mathcal{A}_{V} Y_{1} \tag{32}
\end{equation*}
$$

Now for basic vector field Y_{1} and $V \in \Gamma\left(D^{\prime}\right)$,

$$
\mathcal{H}\left(\nabla_{V} Y_{1}\right)=\mathcal{H}\left(\nabla_{Y_{1}} V\right)=T_{Y_{1}} V .
$$

Thus from Eq. (32), we have

$$
\begin{equation*}
\nabla_{V} Y_{1}=T_{Y_{1}} V+\mathcal{A}_{V} Y_{1} \tag{33}
\end{equation*}
$$

The operators L and \mathcal{A} are related by

$$
\begin{equation*}
g_{1}\left(\mathcal{A}_{V} Y_{1}, W\right)=-g_{1}\left(L(V, W), Y_{1}\right) \tag{34}
\end{equation*}
$$

Theorem 4.10. Suppose that K_{2} is an indefinite Kaehler manifold and K_{1} is a totally umbilical screen generic lightlike submanifold of K_{2}. Let K^{\prime} be an indefinite Kaehler manifold and $\phi: K_{1} \rightarrow K^{\prime}$ be a lightlike submersion from K_{1} onto K^{\prime} such that D^{\prime} is integrable. If \bar{H} and $H^{K^{\prime}}$ represent the holomorphic sectional curvature of K_{2} and K^{\prime} respectively, then for any unit basic vector $Y_{1} \in \Gamma(\mathcal{H})$ of K_{1}, we have

$$
\bar{H}=H^{K^{\prime}}+4\left\|H^{s}\right\|^{2} .
$$

Proof. For $Y_{1}, Y_{2}, X \in \Gamma(D)$, using Eqs. (19) and (21), we have

$$
\begin{equation*}
\nabla_{Y_{1}} \nabla_{Y_{2}} X=\tilde{\nabla}_{Y_{1}}^{K^{\prime}} \tilde{\nabla}_{Y_{2}}^{K_{2}^{\prime}} X+T_{Y_{1}} C\left(Y_{2}, X\right)+\left(\nabla_{Y_{1}} \nabla_{Y_{2}} X\right)^{\mathcal{V}} \tag{35}
\end{equation*}
$$

Replacing Y_{1} with Y_{2} in Eq. (35), we have

$$
\begin{equation*}
\nabla_{Y_{2}} \nabla_{Y_{1}} X=\tilde{\nabla}_{Y}^{K^{\prime}} \tilde{\nabla}_{Y_{1}}^{K^{\prime}} X+T_{Y} C\left(Y_{1}, X\right)+\left(\nabla_{Y_{2}} \nabla_{Y_{1}} X\right)^{\mathcal{V}}, \tag{36}
\end{equation*}
$$

Also

$$
\begin{equation*}
\nabla_{\left[Y_{1}, Y_{2}\right]} X=\tilde{\nabla}_{\mathcal{H}\left[Y_{1}, Y_{2}\right]}^{K^{\prime}} X+2 T_{Z}\left(Y_{1}, Y_{2}\right)+\left(\nabla_{\left[Y_{1}, Y_{2}\right]} X\right)^{\mathcal{V}} \tag{37}
\end{equation*}
$$

Further using Eqs. (35)-(37), we have

$$
\begin{align*}
R^{K_{1}}\left(Y_{1}, Y_{2}\right) X= & \left.\left(R^{K^{\prime}}\left(\tilde{Y}_{1}, \tilde{Y}_{2}\right) \tilde{X}\right)\right)^{*}+T_{X} C\left(Y_{2}, X\right)-T_{Y} C\left(Y_{1}, X\right) \\
& -2 T_{Z}\left(Y_{1}, Y_{2}\right)+\left(R^{K_{1}}\left(Y_{1}, Y_{2}\right) X\right)^{\mathcal{V}} \tag{38}
\end{align*}
$$

where $\left.\left(R^{K^{\prime}}\left(\tilde{Y}_{1}, \tilde{Y}_{2}\right) \tilde{X}\right)\right)^{*}$ denotes the basic vector field of K_{1} corresponding to $\left.R^{K^{\prime}}\left(\tilde{Y}_{1}, \tilde{Y}_{2}\right) \tilde{X}\right)$, therefore using Eq. (38) in Eq. (8), we get

$$
\begin{aligned}
\bar{R}\left(Y_{1}, Y_{2}\right) X= & \left.\left(R^{K^{\prime}}\left(\tilde{Y}_{1}, \tilde{Y}_{2}\right) \tilde{X}\right)\right)^{*}+T_{X} C\left(Y_{2}, X\right)-T_{Y} C\left(Y_{1}, X\right) \\
& -2 T_{Z} C\left(Y_{1}, Y_{2}\right)+A_{h^{l}\left(Y_{1}, X\right)} Y_{2}-A_{h^{l}\left(Y_{2}, X\right)} Y_{1}+ \\
& A_{h^{s}\left(Y_{1}, X\right)} Y_{2}-A_{h^{s}\left(Y_{2}, X\right)} Y_{1}+\left(\nabla_{Y_{1}} h^{l}\right)\left(Y_{2}, X\right)- \\
& \left(\nabla_{Y_{2}} h^{l}\right)\left(Y_{1}, X\right)+D^{l}\left(Y_{1}, h^{s}\left(Y_{2}, X\right)\right)-D^{l}\left(Y_{2}, h^{s}\left(Y_{1}, X\right)\right) \\
& +\left(\nabla_{Y_{1}} h^{s}\right)\left(Y_{2}, X\right)-\left(\nabla_{Y_{2}} h^{s}\right)\left(Y_{1}, X\right)+D^{s}\left(Y_{1}, h^{l}\left(Y_{2}, X\right)\right) \\
& +D^{s}\left(Y_{2}, h^{l}\left(Y_{1}, X\right)\right)+\left(\bar{R}\left(Y_{1}, Y_{2}\right) X\right)^{v} .
\end{aligned}
$$

Now for basic vector field $W \in \Gamma(D)$, we have

$$
\bar{R}\left(Y_{1}, Y_{2}, X, W\right)=g_{1}\left(\bar{R}\left(Y_{1}, Y_{2}\right) X, W\right)
$$

therefore using Eq. (39), we get

$$
\begin{align*}
\bar{R}\left(Y_{1}, Y_{2}, X, W\right)= & \left.g_{1}\left(\left(R^{K^{\prime}}\left(\tilde{Y}_{1}, \tilde{Y}_{2}\right) \tilde{X}\right)\right) *, W\right)+g_{1}\left(T_{X} C\left(Y_{2}, X\right), W\right) \\
& -g_{1}\left(T_{Y} C\left(Y_{1}, X\right), W\right)-2 g_{1}\left(T_{Z} C\left(Y_{1}, Y_{2}\right), W\right) \\
& +g_{1}\left(A_{h^{l}\left(Y_{1}, X\right)} Y_{2}, W\right)-g_{1}\left(A_{h^{l}\left(Y_{2}, X\right)} Y_{1}, W\right) \\
& +g_{1}\left(A_{h^{s}\left(Y_{1}, X\right)} Y_{2}, W\right)-g_{1}\left(A_{h^{s}\left(Y_{2}, X\right)} Y_{1}, W\right) \tag{40}
\end{align*}
$$

$$
\begin{align*}
& g_{1}\left(T_{X} C\left(Y_{2}, X\right), W\right)=-g_{1}\left(C\left(Y_{2}, X\right), C\left(Y_{1}, W\right)\right) \\
& g_{1}\left(T_{Y} C\left(Y_{1}, X\right), W\right)=-g_{1}\left(C\left(Y_{1}, X\right), C\left(Y_{2}, W\right)\right) \tag{42}
\end{align*}
$$

$$
\begin{equation*}
g_{1}\left(T_{Z} C\left(Y_{1}, Y_{2}\right), W\right)=-g_{1}\left(C\left(Y_{1}, Y_{2}\right), C(X, W)\right) \tag{43}
\end{equation*}
$$

Since K_{1} is totally umbilical, thus using Eq. (5), we have

$$
\begin{equation*}
g_{1}\left(A_{h^{l}\left(Y_{1}, X\right)} Y_{2}, W\right)=-g_{1}\left(\bar{\nabla}_{Y} h^{l}\left(Y_{1}, X\right), W\right)=g_{1}\left(h^{l}\left(Y_{1}, X\right), \bar{\nabla}_{Y} W\right)=0 \tag{44}
\end{equation*}
$$

Similarly, we have

$$
\begin{equation*}
g_{1}\left(A_{h^{l}\left(Y_{2}, X\right)} Y_{1}, W\right)=0 \tag{45}
\end{equation*}
$$

Also we have

$$
\begin{equation*}
g_{1}\left(A_{h^{s}\left(Y_{1}, X\right)} Y_{2}, W\right)=g_{2}\left(h^{s}\left(Y_{2}, W\right), h^{s}\left(Y_{1}, X\right)\right) \tag{46}
\end{equation*}
$$

and

$$
\begin{equation*}
g_{1}\left(A_{h^{s}\left(Y_{2}, X\right)} Y_{1}, W\right)=g_{2}\left(h^{s}\left(Y_{1}, W\right), h^{s}\left(Y_{2}, X\right)\right) \tag{47}
\end{equation*}
$$

Now using Eqs. (41) - (47) in Eq. (40), we get

$$
\begin{align*}
\bar{R}\left(Y_{1}, Y_{2}, X, W\right)= & \bar{R}^{K^{\prime}}\left(\tilde{Y}_{1}, \tilde{Y}_{2}, \tilde{X}, \tilde{W}\right)-g_{1}\left(C\left(Y_{2}, X\right), C\left(Y_{1}, W\right)\right) \\
& +g_{1}\left(C\left(Y_{1}, X\right), C\left(Y_{2}, W\right)\right) \\
& +2 g_{1}\left(C\left(Y_{1}, Y_{2}\right), C(X, W)\right) \\
& +g_{2}\left(h^{s}\left(Y_{2}, W\right), h^{s}\left(Y_{1}, X\right)\right) \\
& -g_{2}\left(h^{s}\left(Y_{1}, W\right), h^{s}\left(Y_{2}, X\right)\right. \tag{48}
\end{align*}
$$

Now putting $Y_{2}=\bar{J} Y_{1}, X=Y_{1}, W=\bar{J} Y_{1}$ in Eq. (48) and using skew symmetric property of C along with Eqs. (28) and (30), we get

$$
\begin{align*}
\bar{R}\left(Y_{1}, \bar{J} Y_{1}, Y_{1}, \bar{J} Y_{1}\right)= & \bar{R}^{K^{\prime}}\left(\tilde{Y}_{1}, \bar{J} \tilde{Y}_{1}, \tilde{Y}_{1}, \bar{J} \tilde{Y}_{1}\right)-g_{1}\left(C\left(\bar{J} Y_{1}, Y_{1}\right)\right. \\
& \left.C\left(Y_{1}, \bar{J} Y_{1}\right)\right)+2 g_{1}\left(C\left(Y_{1}, \bar{J} Y_{1}\right), C\left(Y_{1}, \bar{J} Y_{1}\right)\right) \\
& +g_{2}\left(h^{s}\left(\bar{J} Y_{1}, \bar{J} Y_{1}\right), h^{s}\left(Y_{1}, Y_{1}\right)\right), \tag{49}
\end{align*}
$$

Since

$$
\begin{aligned}
C\left(\bar{J} Y_{1}, Y_{1}\right) & =-C\left(Y_{1}, \bar{J} Y_{1}\right), g_{1}\left(C\left(Y_{1}, \bar{J} Y_{1}\right), C\left(Y_{1}, \bar{J} Y_{1}\right)\right) \\
& =g_{1}\left(\bar{J} h^{s}\left(Y_{1}, Y_{1}\right), \bar{J} h^{s}\left(Y_{1}, Y_{1}\right)\right) \\
& =g_{1}\left(h^{s}\left(Y_{1}, Y_{1}\right), h^{s}\left(Y_{1}, Y_{1}\right)\right),
\end{aligned}
$$

using this together with hypothesis and Proposition (4.8), we have

$$
\bar{R}\left(Y_{1}, \bar{J} Y_{1}, Y_{1}, \bar{J} Y_{1}\right)=\bar{R}^{K^{\prime}}\left(\tilde{Y}_{1}, \bar{J} \tilde{Y}_{1}, \tilde{Y}_{1}, \bar{J} \tilde{Y}_{1}\right)+4\left\|H^{s}\right\|^{2}
$$

that is

$$
\bar{H}=H^{K^{\prime}}+4\left\|H^{s}\right\|^{2}
$$

Theorem 4.11. Suppose that K_{2} is an indefinite Kaehler manifold and K_{1} is a totally umbilical screen generic lightlike submanifold of K_{2}. If K^{\prime} is an indefinite Kaehler manifold such that $\phi: K_{1} \rightarrow K^{\prime}$ is a lightlike submersion from K_{1} onto K^{\prime} such that D^{\prime} is integrable, then the sectional curvature of K_{2} and of the fibre are related by

$$
\begin{aligned}
\bar{K}(Z \wedge W)= & \hat{K}(Z \wedge W)-g_{1}(L(Z, W), L(W, Z)) \\
& +g_{1}(L(W, W), L(Z, Z)),
\end{aligned}
$$

where $Z, W \in \Gamma\left(D^{\prime}\right)$.
Proof. For $Z, W, V \in \Gamma\left(D^{\prime}\right)$, using Eqs. (31) and (32) we have

$$
\begin{align*}
R(Z, W) V= & \nabla_{Z} \nabla_{W} V-\nabla_{W} \nabla_{Z} V-\nabla_{[Z, W]} V \\
= & \mathcal{A}_{Z} L(W, V)+\hat{\nabla}_{Z} \hat{\nabla}_{W} V \\
& -\mathcal{A}_{W} L(Z, V)-\hat{\nabla}_{W} \hat{\nabla}_{Z} V-\hat{\nabla}_{[Z, W]} V \\
& + \text { horizontal part } \\
= & \hat{R}(Z, W) V+\mathcal{A}_{Z} L(W, V)-\mathcal{A}_{W} L(Z, V) \\
& + \text { horizontal part. } \tag{50}
\end{align*}
$$

using Eqs. (31)-(34) in Eq. (50), one has

$$
\begin{aligned}
R(Z, W, V, S)= & g_{1}(R(Z, W) V, S)=g_{1}\left(\hat{R}(Z, W) V+\mathcal{A}_{Z} L(W, V)\right. \\
& \left.-\mathcal{A}_{Z} L(W, V), S\right) \\
= & g_{1}(\hat{R}(Z, W) V, S)+g_{1}\left(\mathcal{A}_{Z} L(W, V), S\right) \\
& -g_{1}\left(\mathcal{A}_{W} L(Z, V), S\right) \\
= & \hat{R}(Z, W, V, S)-g_{1}(L(Z, S), L(W, V)) \\
& +g_{1}(L(W, S), L(Z, V) .
\end{aligned}
$$

Taking $V=Z$ and $S=W$ in above equation, we acquire

$$
\begin{align*}
R(Z, W, Z, W)= & \hat{R}(Z, W, Z, W)-g_{1}(L(Z, W), L(W, Z)) \\
& +g_{1}(L(W, W), L(Z, Z) \tag{51}
\end{align*}
$$

From Eq. (8), setting $Y_{1}=Z, Y_{2}=W$, we obtain

$$
\begin{aligned}
\bar{R}(Z, W) Z= & R(Z, W) Z+A_{h^{l}(Z, Z)} W-A_{h^{l}(W, Z)} Z+A_{h^{s}(Z, Z)} W \\
& -A_{h^{s}(W, Z)} Z+\left(\nabla_{Z} h^{l}\right)(W, Z)-\left(\nabla_{W} h^{l}\right)(Z, Z) \\
& +D^{l}\left(Z, h^{s}(W, Z)\right)-D^{l}\left(W, h^{s}(Z, Z)\right)+\left(\nabla_{Z} h^{s}\right)(W, Z) \\
& -\left(\nabla_{W} h^{s}\right)(Z, Z)+D^{s}\left(Z, h^{l}(W, Z)\right)+D^{s}\left(W, h^{l}(Z, Z)\right),
\end{aligned}
$$

Then considering the inner product of the above equation with $W \in \Gamma\left(D^{\prime}\right)$, we have

$$
\begin{aligned}
\bar{R}(Z, W, Z, W)= & g_{1}(\bar{R}(Z, W) Z, W)=g_{1}(R(Z, W) Z, W) \\
& +g_{1}\left(A_{h^{l}(Z, Z)} W, W\right)-g_{1}\left(A_{h^{l}(W, Z)} Z, W\right) \\
& +g_{1}\left(A_{h^{s}(Z, Z)} W, W\right)-g_{1}\left(A_{h^{s}(W, Z)} Z, W\right) \\
& +g_{1}\left(\left(\nabla_{Z} h^{l}\right)(W, Z), W\right)-g_{1}\left(\left(\nabla_{W} h^{l}\right)(Z, Z), W\right) \\
& +g_{1}\left(D^{l}\left(Z, h^{s}(W, Z)\right), W\right)-g_{1}\left(D^{l}\left(W, h^{s}(Z, Z)\right), W\right) \\
& +g_{1}\left(\left(\nabla_{Z} h^{s}\right)(W, Z), W\right)-g_{1}\left(D^{l}\left(W, h^{s}(Z, Z)\right), W\right) \\
& +g_{1}\left(\left(\nabla_{Z} h^{s}\right)(W, Z), W\right)-g_{1}\left(\left(\nabla_{W} h^{s}\right)(Z, Z), W\right) \\
& +g_{1}\left(D^{s}\left(Z, h^{l}(W, Z)\right), W\right)+g_{1}\left(D^{s}\left(W, h^{l}(Z, Z)\right), W\right),
\end{aligned}
$$

which further becomes

$$
\begin{align*}
\bar{R}(Z, W, Z, W)= & R(Z, W, Z, W)+g_{1}\left(A_{h^{l}(Z, Z)} W, W\right) \\
& -g_{1}\left(A_{h^{l}(W, Z)} Z, W\right)+g_{1}\left(A_{h^{s}(Z, Z)} W, W\right) \\
& -g_{1}\left(A_{h^{s}(W, Z)} Z, W\right) \tag{52}
\end{align*}
$$

Using Eqs. (7) and (51) in Eq. (52), we get

$$
\begin{align*}
\bar{R}(Z, W, Z, W)= & \hat{R}(Z, W, Z, W)-g_{1}(L(Z, W), L(W, Z)) \\
& +g_{1}\left(L(W, W), L(Z, Z)+g_{1}\left(A_{h^{l}(Z, Z)} W, W\right)\right. \\
& -g_{1}\left(A_{h^{l}(W, Z)} Z, W\right)+g_{1}\left(h^{s}(W, W), h^{s}(Z, Z)\right) \\
& -g_{1}\left(h^{s}(Z, W), h^{s}(Z, W)\right) \tag{53}
\end{align*}
$$

As K_{1} is a totally umbilical lightlike manifold, therefore from theorem (3.5) and $h^{s}(Z, W)=H^{s} g_{1}(Z, W)$, thus Eq. (53) reduces to

$$
\begin{aligned}
\bar{R}(Z, W, Z, W)= & \hat{R}(Z, W, Z, W)-g_{1}(L(Z, W), L(W, Z)) \\
& +g_{1}(L(W, W), L(Z, Z))
\end{aligned}
$$

Thus the proof follows.
Theorem 4.12. Let K_{2} be an indefinite Kaehler manifold and K_{1} be a totally umbilical screen generic lightlike submanifold of K_{2}. If K^{\prime} is an indefinite Kaehler manifold such that $\phi: K_{1} \rightarrow K^{\prime}$ is a lightlike submersion from K_{1}
onto K^{\prime}, then for $Y_{1}, Y_{2} \in \Gamma(D)$ and $V_{1}, V_{2} \in \Gamma\left(D^{\prime}\right)$

$$
\begin{aligned}
\bar{R}\left(Y_{1}, V_{1}, Y_{2}, V_{2}\right)= & g_{1}\left(T_{Y_{1}} V_{2}, P\left(\nabla_{V_{1}} Y_{2}\right)\right)-g_{1}\left(A_{V_{1}} Y_{2}, Q \nabla_{Y_{1}} V_{2}\right) \\
& -g_{1}\left(L\left(V_{1}, V_{2}\right), \tilde{\nabla}_{Y_{1}}^{K_{1}^{\prime}} Y_{2}\right)+g_{1}\left(L\left(\left[Y_{1}, Y_{2}\right], V_{2}\right), Y_{2}\right) \\
& +g_{1}\left(\hat{\nabla}_{V_{1}} C\left(Y_{1}, Y_{2}\right), V_{2}\right)+g_{2}\left(h^{s}\left(V_{1}, W\right), h^{s}\left(Y_{1}, Y_{2}\right)\right) .
\end{aligned}
$$

Proof. For $Y_{1}, Y_{2} \in \Gamma(D)$ and $V_{1}, V_{2} \in \Gamma\left(D^{\prime}\right)$, we have

$$
\begin{equation*}
\nabla_{Y_{1}} \nabla_{V_{1}} Y_{2}=C\left(Y_{1}, \mathcal{H}\left(\nabla_{V_{1}} Y_{2}\right)+\nabla_{Y_{1}}\left(\mathcal{A}_{V_{1}} Y_{2}\right)+\right.\text { horizontal part. } \tag{54}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
\nabla_{V_{1}} \nabla_{Y_{1}} Y_{2}=\mathcal{A}_{V_{1}} \tilde{\nabla}_{Y_{1}}^{K^{\prime}} Y_{2}+\hat{\nabla}_{V_{1}} C\left(Y_{1}, Y_{2}\right)+\text { horizontal part } \tag{55}
\end{equation*}
$$

and

$$
\begin{equation*}
\nabla_{\left[Y_{1}, V_{1}\right]} Y_{2}=\mathcal{A}_{\left[Y_{1}, V_{1}\right]} Y_{2}+\text { horizontal part. } \tag{56}
\end{equation*}
$$

We know that

$$
R\left(Y_{1}, V_{1}\right) Y_{2}=\nabla_{Y_{1}} \nabla_{V_{1}} Y_{2}+\nabla_{V_{1}} \nabla_{Y_{1}} Y_{2}-\nabla_{\left[Y_{1}, V_{1}\right]} Y_{2}
$$

further using Eqs. (54) - (56) in above equation, we acquire

$$
\begin{aligned}
R\left(Y_{1}, V_{1}\right) Y_{2}= & C\left(Y_{1}, \mathcal{H}\left(\nabla_{V_{1}} Y_{2}\right)+\nabla_{Y_{1}}\left(\mathcal{A}_{V_{1}} Y_{2}\right)+\mathcal{A}_{V_{1}} \tilde{\nabla}_{Y_{1}}^{K^{\prime}} Y_{2}\right. \\
& +\hat{\nabla}_{V_{1}} C\left(Y_{1}, Y_{2}\right)-\mathcal{A}_{\left[Y_{1}, V_{1}\right]} Y_{2}+\text { horizontal part. }
\end{aligned}
$$

Now taking the inner product of the above equation with $V_{2} \in \Gamma\left(D^{\prime}\right)$ and using Eqs.(23) and (34), we obtain

$$
\begin{aligned}
R\left(Y_{1}, V_{1}, Y_{2}, V_{2}\right)= & g_{1}\left(R\left(Y_{1}, V_{1}\right) Y_{2}, V_{2}\right) \\
= & g_{1}\left(C\left(Y_{1}, \mathcal{H}\left(\nabla_{V_{1}} Y_{2}\right)\right), V_{2}\right)+g_{1}\left(\nabla_{Y_{1}}\left(\mathcal{A}_{V_{1}} Y_{2}\right), V_{2}\right) \\
& +g_{1}\left(\mathcal{A}_{V_{1}} \tilde{\nabla}_{Y_{1}}^{K_{1}^{\prime}} Y_{2}, V_{2}\right)+g_{1}\left(\hat{\nabla}_{V_{1}} C\left(Y_{1}, Y_{2}\right), V_{2}\right) \\
& -g_{1}\left(\mathcal{A}_{\left[Y_{1}, V_{1}\right]} Y_{2}, V_{2}\right) \\
= & g_{1}\left(T_{Y_{1}} V_{2}, \mathcal{H}\left(\nabla_{V_{1}} Y_{2}\right)\right)+g_{1}\left(\nabla_{Y_{1}} \mathcal{A}_{V_{1}} Y_{2}, V_{2}\right) \\
& -g_{1}\left(L\left(V_{1}, V_{2}\right), \tilde{\nabla}_{Y_{1}} Y_{2}\right)+g_{1}\left(L\left(\left[Y_{1}, V_{1}\right], V_{2}\right), Y_{2}\right) \\
& +g_{1}\left(\hat{\nabla}_{V_{1}} C\left(Y_{1}, Y_{2}\right), V_{2}\right)
\end{aligned}
$$

In Eq. (8), setting $Y_{2}=V_{1}$ and $X=Y_{2}$, one has

$$
\begin{align*}
\bar{R}\left(Y_{1}, V_{1}\right) Y_{2}= & R\left(Y_{1}, V_{1}\right) Y_{2}+A_{h^{l}\left(Y_{1}, Y_{2}\right)} V_{1}-A_{h^{l}\left(V_{1}, Y_{2}\right)} Y_{1} \\
& +A_{h^{s}\left(Y_{1}, Y_{2}\right)} V_{1}-A_{h^{s}\left(V_{1}, Y_{2}\right)} Y_{1} \\
& +\left(\nabla_{Y_{1}} h^{l}\right)\left(V_{1}, Y_{2}\right)-\left(\nabla_{V_{1}} h^{l}\right)\left(Y_{1}, Y_{2}\right) \\
& +D^{l}\left(Y_{1}, h^{s}\left(V_{1}, Y_{2}\right)\right)-D^{l}\left(V_{1}, h^{s}\left(Y_{1}, Y_{2}\right)\right) \\
& +\left(\nabla_{Y_{1}} h^{s}\right)\left(V_{1}, Y_{2}\right)-\left(\nabla_{V_{1}} h^{s}\right)\left(Y_{1}, Y_{2}\right) \\
& +D^{s}\left(Y_{1}, h^{l}\left(V_{1}, Y_{2}\right)\right)-D^{s}\left(V_{1}, h^{l}\left(Y_{1}, Y_{2}\right)\right) . \tag{58}
\end{align*}
$$

Now using Eq. (58), we have

$$
\begin{align*}
\bar{R}\left(Y_{1}, V_{1}, Y_{2}, V_{2}\right)= & g_{1}\left(\bar{R}\left(Y_{1}, V_{1}\right) Y_{2}, V_{2}\right) \\
= & R\left(Y_{1}, V_{1}, Y_{2}, V_{2}\right)+g_{1}\left(A_{h^{l}\left(Y_{1}, Y_{2}\right)} V_{1}, V_{2}\right) \\
& -g_{1}\left(A_{h^{l}\left(V_{1}, Y_{2}\right)} Y_{1}, V_{2}\right)+g_{1}\left(A_{h^{s}\left(Y_{1}, Y_{2}\right)} V_{1}, V_{2}\right) \\
& -g_{1}\left(A_{h^{s}\left(V_{1}, Y_{2}\right)} Y_{1}, V_{2}\right) . \tag{59}
\end{align*}
$$

Using Eq. (57) in Eq. (59), we derive

$$
\begin{aligned}
\bar{R}\left(Y_{1}, V_{1}, Y_{2}, V_{2}\right)= & g_{1}\left(T_{Y_{1}} V_{2}, \mathcal{H}\left(\nabla_{V_{1}} Y_{2}\right)\right)+g_{1}\left(\nabla_{Y_{1}} \mathcal{A}_{V_{1}} Y_{2}, V_{2}\right) \\
& -g_{1}\left(L\left(V_{1}, V_{2}\right), \tilde{\nabla}_{Y_{1}}^{K_{1}^{\prime}} Y_{2}\right)+g_{1}\left(L\left(\left[Y_{1}, Y_{2}\right], V_{2}\right), Y_{2}\right) \\
& +g_{1}\left(\hat{\nabla}_{V_{1}} C\left(Y_{1}, Y_{2}\right), V_{2}\right)+g_{1}\left(A_{h^{l}\left(Y_{1}, Y_{2}\right)} V_{1}, V_{2}\right) \\
& -g_{1}\left(A_{h^{l}\left(V_{1}, Y_{2}\right)} Y_{1}, V_{2}\right)+g_{1}\left(A_{h^{s}\left(Y_{1}, Y_{2}\right)} V_{1}, V_{2}\right) \\
& -g_{1}\left(A_{h^{s}\left(V_{1}, Y_{2}\right)} Y_{1}, V_{2}\right) .
\end{aligned}
$$

Further using Eq. (7), we acquire

$$
\begin{aligned}
\bar{R}\left(Y_{1}, V_{1}, Y_{2}, V_{2}\right)= & g_{1}\left(T_{Y_{1}} V_{2}, P\left(\nabla_{V_{1}} Y_{2}\right)\right)+g_{1}\left(\nabla_{Y_{1}} \mathcal{A}_{V_{1}} Y_{2}, V_{2}\right) \\
& -g_{1}\left(L\left(V_{1}, V_{2}\right), \tilde{\nabla}_{Y_{1}}^{K_{1}^{\prime}} Y_{2}\right)+g_{1}\left(L\left(\left[Y_{1}, Y_{2}\right], V_{2}\right), Y_{2}\right) \\
& +g_{1}\left(\hat{\nabla}_{V_{1}} C\left(Y_{1}, Y_{2}\right), V_{2}\right)+g_{1}\left(A_{h^{l}\left(Y_{1}, Y_{2}\right)} V_{1}, V_{2}\right) \\
& -g_{1}\left(A_{h^{l}\left(V_{1}, Y_{2}\right)} Y_{1}, V_{2}\right)+g_{2}\left(h^{s}\left(V_{1}, V_{2}\right), h^{s}\left(Y_{1}, Y_{2}\right)\right) \\
& -g_{2}\left(h^{s}\left(Y_{1}, V_{2}\right), h^{s}\left(V_{1}, Y_{2}\right)\right),
\end{aligned}
$$

Now for $Y_{1}, Y_{2} \in \Gamma(D)$ and $V_{1}, V_{2} \in \Gamma\left(D^{\prime}\right)$, we have

$$
\begin{aligned}
g_{1}\left(\nabla_{Y_{1}} \mathcal{A}_{V_{1}} Y_{2}, V_{2}\right) & =g_{2}\left(\bar{\nabla}_{Y_{1}} \mathcal{A}_{V_{1}} Y_{2}, V_{2}\right)=-g_{1}\left(\mathcal{A}_{V_{1}} Y_{2}, \bar{\nabla}_{Y_{1}} V_{2}\right) \\
& =-g_{1}\left(\mathcal{A}_{V_{1}} Y_{2}, \nabla_{Y_{1}} V_{2}\right) \\
& =-g_{1}\left(\mathcal{A}_{V_{1}} Y_{2}, Q \nabla_{Y_{1}} V_{2}\right) .
\end{aligned}
$$

Using above result and totally umbilical property of K_{1}, Eq. (60) becomes

$$
\begin{aligned}
\bar{R}\left(Y_{1}, V_{1}, Y_{2}, V_{2}\right)= & g_{1}\left(T_{Y_{1}} V_{2}, P\left(\nabla_{V_{1}} Y_{2}\right)\right)-g_{1}\left(\mathcal{A}_{V_{1}} Y_{2}, Q \nabla_{Y_{1}} V_{2}\right) \\
& -g_{1}\left(L\left(V_{1}, V_{2}\right), \tilde{\nabla}_{Y_{1}}^{K_{1}^{\prime}} Y_{2}\right)+g_{1}\left(L\left(\left[Y_{1}, Y_{2}\right], V_{2}\right), Y_{2}\right) \\
& +g_{1}\left(\hat{\nabla}_{V_{1}} C\left(Y_{1}, Y_{2}\right), V_{2}\right)+g_{2}\left(h^{s}\left(V_{1}, V_{2}\right), h^{s}\left(Y_{1}, Y_{2}\right)\right) .
\end{aligned}
$$

Theorem 4.13. Assume that K_{2} is an indefinite Kaehler manifold and K_{1} is a totally umbilical screen generic lightlike submanifold of K_{2}. If K^{\prime} is an indefinite Kaehler manifold such that $\phi: K_{1} \rightarrow K^{\prime}$ be a lightlike submersion from K_{1} onto K^{\prime}, then

$$
\begin{aligned}
\bar{K}\left(Y_{1}, V_{1}\right)= & \left\|T_{Y_{1}} V_{1}\right\|^{2}-g_{1}\left(L\left(V_{1}, V_{1}\right), \tilde{\nabla}_{Y_{1}}^{K_{1}^{\prime}} Y_{1}\right)+g_{1}\left(L\left(\left[Y_{1}, Y_{1}\right], V_{1}\right), Y_{1}\right) \\
& +g_{2}\left(h^{s}\left(V_{1}, V_{1}\right), h^{s}\left(Y_{1}, Y_{1}\right)\right),
\end{aligned}
$$

where $Y_{1} \in \Gamma(D)$ and $V_{1} \in \Gamma\left(D^{\prime}\right)$.

Proof. For $Y_{1} \in \Gamma(D)$ and $V_{1} \in \Gamma\left(D^{\prime}\right)$, put $Y_{2}=Y_{1}, V_{2}=V_{1}$ in Eq. (61), we get

$$
\begin{aligned}
\bar{R}\left(Y_{1}, V_{1}, Y_{1}, V_{1}\right)= & g_{1}\left(T_{Y_{1}} V_{1}, P\left(\nabla_{V_{1}} Y_{1}\right)\right)-g_{1}\left(\mathcal{A}_{V_{1}} Y_{1}, Q \nabla_{Y_{1}} V_{1}\right) \\
& -g_{1}\left(L\left(V_{1}, V_{1}\right), \tilde{\nabla}_{Y_{1}}^{K_{1}^{\prime}} Y_{1}\right)+g_{1}\left(L\left(\left[Y_{1}, Y_{1}\right], V_{1}\right), Y_{1}\right) \\
& +g_{1}\left(\hat{\nabla}_{V_{1}} C\left(Y_{1}, Y_{1}\right), V_{1}\right)+g_{2}\left(h^{s}\left(V_{1}, V_{1}\right), h^{s}\left(Y_{1}, Y_{1}\right)\right) .
\end{aligned}
$$

Using Eq. (33) and skew-symmetric property of tensor C, the result follows.

References

[1] M. Barros and A. Romero, Indefinite Kaehler manifolds, Math. Ann. 261 (1982), 55-62.
[2] J. P. Bourguinon and H. B. Lawson, Stability and isolation phenomena for Yang-Mills fields, Commun. Math. Phys. 79 (1981), 189-230.
[3] B. Dogan, B. Sahin and E. Yasar, Screen generic lightlike submanifold, Mediterr. J. Math. 16 (2019), 040001-21.
[4] K. L. Duggal and A. Bejancu, Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications, Kluwer Academic Publishers, Dordrecht, The Netherlands 1996.
[5] K. L. Duggal and D. H. Jin, Totally umbilical lightlike submanifolds, Kodai Math. J. 26 (2003), 49-68.
[6] K. L. Duggal and D. H. Jin, Generic lightlike submanifolds of an indefinite sasakian manifold, Int. Electron. J. Geom. 5 (2012), no. 1, 108-119.
[7] T. Fatima, M. A. Akyol, and A. A. Alzulaibani, On a submersion of generic submanifold of a nearly Kaehler manifold, Int. J. Geom. Methods Mod. 19 (2022), no. 4, 2250048-62.
[8] A. Gray, Pseudo-Riemannian almost product manifold and submersion, J. Math. Mech. 16 (1967), 715-737.
[9] R. S. Gupta and A. Sharfuddin, Screen transversal lightlike submanifolds of indefinite cosymplectic manifolds, Rend. Semin. Mat. Univ. Padova. 124 (2010), 145-156.
[10] S. Ianus and M. Visinescu, Kaluza-Klein theory with scalar fields and generalised Hopf manifolds, Class. Quantam Gravity 4 (1987), 1317-1325.
[11] S. Kobayashi, Submersions of CR submanifolds, Tohoku Math. J. 9 (1987), 95-100.
[12] S. Kumar, Geometry warped product lightlike submanifolds of indefinite nearly Kaehler manifolds, J. Geom. 21 (2018), 010001-18.
[13] M. T. Mustafa, Applications of harmonic morphisms to gravity, J. Math. Phys. 41 (2000), 6918-6929.
[14] B. O'Neill, Semi-Riemannian Geometry with Applications to Relativity, Academic Press, New York-London, 1983.
[15] B. O'Neill, The fundamental equations of a submersion, Michigan Math. J. 13 (1966), 459-469.
[16] B. Sahin, On a submersion between Reinhart lightlike manifolds and semi-Riemannian manifolds, Mediterr. J. Math. 5 (2008), 273-284.
[17] B. Sahin and Yilmaz Gündüzalp, Submersion from semi-Riemannian manifolds onto lightlike manifolds, Hacet. J. Math. Stat 39 (2010), 41-53.
[18] G. Sharma, S. Kumar, and M. Kumar, On lightlike submersion of radical transversal lightlike submanifolds of a Kaehler manifold, ECS Trans. 107 (2022), no. 1, 1006910084.

Gaurav Sharma
Department of Mathematics,
Maharaja Agrasen University,
Baddi-174103, Himachal Pradesh, India.
SDWG Government College Beetan,
Una-176601, Himachal pradesh, India.
E-mail: g.gauravsh@gmail.com
Sangeet Kumar
Department of Mathematics,
Sri Guru Teg Bahadur Khalsa College,
Sri Anandpur Sahib-140118, Punjab, India.
E-mail: sp7maths@gmail.com
Dinesh Kumar Sharma
Department of Mathematics, Maharaja Agrasen University, Baddi-174103, Himachal Pradesh, India. E-mail: dksharma200513@gmail.com

[^0]: Received March 2, 2023. Revised April 17, 2023. Accepted May 10, 2023.
 2020 Mathematics Subject Classification. 53A05.
 Key words and phrases. lightlike submersion; indefinite Kaehler manifold, holomorphic bisectional curvature.
 *Corresponding author

