A FORMAL DERIVATION ON INTEGRAL GROUP RINGS FOR CYCLIC GROUPS

Joongul Lee

Abstract

Let G be a cyclic group of prime power order p^{k}, and let I be the augmentation ideal of the integral group ring $\mathbb{Z}[G]$. We define a derivation on $\mathbb{Z} / p^{k} \mathbb{Z}[G]$, and show that for $2 \leq n \leq p$, an element $\alpha \in I$ is in I^{n} if and only if the i-th derivative of the image of α in $\mathbb{Z} / p^{k} \mathbb{Z}[G]$ vanishes for $1 \leq i \leq(n-1)$.

1. Introduction

Let G be a finite abelian group, and let I be the augmentation ideal of $\mathbb{Z}[G]$, which is the kernel of the augmentation map

$$
\begin{aligned}
\epsilon: \mathbb{Z}[G] & \rightarrow \mathbb{Z} \\
\epsilon\left(\sum_{g \in G} a_{g} g\right) & =\sum_{g \in G} a_{g}
\end{aligned}
$$

For $\alpha \in \mathbb{Z}[G]$ and a positive integer n, it is of considerable interest to determine whether $\alpha \in I^{n}$. The Stickelberger element is used by Iwasawa to construct the p-adic L-functions for cyclotomic \mathbb{Z}_{p}-extensions of number fields, therefore the arithmetic properties of the Stickelberger elements may give important information on the p-adic L-functions. See [1], [2] for example.

2. Reduction modulo p^{k}

Let G be a cyclic group of order p^{k} for a prime p, and let A be the commutative ring $\mathbb{Z} / p^{k} \mathbb{Z}$. Reducing the coefficients of elements of $\mathbb{Z}[G]$ modulo p^{k}, we have the map

$$
\pi: \mathbb{Z}[G] \rightarrow A[G]
$$

which is a surjective ring homomorphism.
Let I be the augmentation ideal of $\mathbb{Z}[G]$, and let J be the augmentation ideal of $A[G]$. It is clear that π sends I onto J, I^{n} onto J^{n}, and therefore
induces a surjective homomorphism from I^{n} / I^{n+1} to J^{n} / J^{n+1} for a positive integer n.

Proposition 1. For $1 \leq n \leq p-1, \pi$ induces an isomorphism from I^{n} / I^{n+1} to J^{n} / J^{n+1}.

Proof. Let σ be a generator of G and let $\tau=\sigma-1$. It is well-known that I^{n} / I^{n+1} is a cyclic \mathbb{Z}-module of order p^{k} generated by τ^{n}. Similarly, J^{n} / J^{n+1} is a cyclic A-module generated by τ^{n}, therefore we need to show that the annihilator of J^{n} / J^{n+1} as an A-module is (0) for $1 \leq n \leq p-1$.

Note that

$$
A[G] \cong A[x] /\left(x^{p^{k}}-1\right)
$$

where σ maps to x. If we make a change of variable using $\tau=\sigma-1$, we obtain

$$
\begin{equation*}
A[G] \cong A[x] /\left((x+1)^{p^{k}}-1\right) \tag{1}
\end{equation*}
$$

where τ maps to x. Let

$$
\phi(x)=(x+1)^{p^{k}}-1=\sum_{i=1}^{p^{k}}\binom{p^{k}}{i} x^{i} \in A[x] .
$$

The isomorphism (1) implies that for $f(x) \in A[x], f(\tau)=0$ in $A[G]$ if and only if $f(x)$ is divisible by $\phi(x)$ in $A[x]$.

Let $l \in A . l$ annihilates J^{n} / J^{n+1} if and only if $l \tau^{n}$ can be written as a linear combination of τ^{i} for $i>n$, which is equivalent to the existence of a multiple of $\phi(x)$ in $A[x]$ whose term with lowest degree is $l x^{n}$. As the coefficient of x^{i} in $\phi(x)$ is 0 for $i \leq p-1$, it is impossible to find a multiple of $\phi(x)$ in $A[x]$ which has term with degree lower than p. Therefore, for $1 \leq n \leq p-1, J^{n} / J^{n+1}$ is an additive cyclic group of order p^{k}, and the induced map from I^{n} / I^{n+1} to J^{n} / J^{n+1} is an isomorphism for $1 \leq n \leq p-1$.

3. Derivation on $A[G]$

Let us first consider

$$
\begin{aligned}
d: A[x] & \rightarrow A[x] \\
d\left(\sum_{i=0}^{p^{k}-1} a_{i} x^{i}\right) & =\sum_{i=0}^{p^{k}-1} i a_{i} x^{i-1} .
\end{aligned}
$$

It is straightforward to verify that for $f, g \in A[x]$,

$$
\begin{aligned}
d(f+g) & =d f+d g \\
d(f g) & =f d g+g d f
\end{aligned}
$$

from which it follows that if

$$
f \equiv g \quad\left(\bmod \left(x^{p^{k}}-1\right)\right)
$$

then

$$
d f \equiv d g \quad\left(\bmod \left(x^{p^{k}}-1\right)\right)
$$

as $d\left(x^{p^{k}}-1\right)=0$ in $A[x]$.
We fix a generator σ of G, and define

$$
\begin{aligned}
D: A[G] & \rightarrow A[G], \\
D\left(\sum_{i=0}^{p^{k}-1} a_{i} \sigma^{i}\right) & =\sum_{i=0}^{p^{k}-1} i a_{i} \sigma^{i-1} .
\end{aligned}
$$

The above discussion implies that D is a well-defined A-derivation on $A[G]$.
For $\alpha \in A[G]$ and a positive integer n, we adopt the notations $\alpha^{(n)}=D^{n} \alpha$ and $\alpha^{(n)}(\epsilon)=\epsilon\left(D^{n} \alpha\right)$. We also adopt the notation $\alpha^{(0)}=\alpha$.

Theorem 2. Suppose α is an element of J. For $2 \leq n \leq p, \alpha \in J^{n}$ if and only if $\alpha^{(i)}(\epsilon)=0$ for $1 \leq i \leq n-1$.

Proof. We prove the theorem by mathematical induction on n.
For $n=2$, let us write

$$
\alpha=\beta \tau=\beta(\sigma-1)
$$

Then $D \alpha=\tau D \beta+\beta$, so $\alpha^{(1)}(\epsilon)=\epsilon(\beta)$ from which the result follows.
Let us assume that the theorem holds for $n \leq k$ with $2 \leq k \leq p-1$. Suppose $\alpha=\beta \tau^{k}$. Using Leibniz's law we have

$$
\alpha^{(k)}=\sum_{i=0}^{k}\binom{k}{i} \frac{k!}{i!} \beta^{(i)} \tau^{i}
$$

from which we get $\alpha^{(k)}(\epsilon)=k!\cdot \epsilon(\beta)$. As $k!$ is a unit in A, we get $\alpha^{(k)}(\epsilon)=0$ if and only if $\beta \in J$, in other words $\alpha \in J^{k+1}$.

Combining Proposition 1 and Theorem 2, we get the following
Theorem 3. For $\alpha \in I$ and $2 \leq n \leq p, \alpha \in I^{n}$ if and only if $(\pi \alpha)^{(i)}(\epsilon)=0$ for $1 \leq i \leq n-1$.

Remarks. 1. Theorem 3 does not hold for $n=p+1$. For $\alpha=p^{k-1} \tau^{p}$, $(\pi \alpha)^{(i)}=0$ for all $i \geq 1$ but $\alpha \notin I^{p+1}$.
2. Our definition of the derivation D depends on the choice of the generator of G. One can use "chain rule" to prove that while the value $D \alpha$ depends on the choice of the generator, the fact that $\epsilon(D \alpha)=0$ is independent of the choice of the generator. Hence the statement of Theorem 2 and Theorem 3 remains valid if another generator of G is used to define the derivation.

References

[1] B. H. Gross, On the values of abelian L-functions at $s=0$, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 35 (1988), no. 1, 177-197.
[2] L. C. Washington, Introduction to Cyclotomic Fields, Graduate Texts in Mathematics, VOl. 83, Second Edition, Springer-Verlag, New York, 1997.

Joongul Lee
Department of Mathematics Education, Hongik University, Mapo-gu Wausan-ro 94, Seoul, 04066, Republic of Korea.
E-mail: jglee@hongik.ac.kr

