(k, m)-TYPE SLANT HELICES FOR THE NULL CARTAN CURVE WITH THE BISHOP FRAME IN E ${ }_{1}^{4}$

Sümeyye Gür Mazlum and Mehmet Bektaş*

Abstract

In this paper, we obtain (k, m)-type slant helices for a null Cartan curve with the Bishop frame in Minkowski space E_{1}^{4}.

1. Introduction

Minkowski space (or Minkowski space-time E_{1}^{4}), having an important place in mathematical physics, is a combination of Euclidean 3-space and time (as the fourth dimension). Both physicists and geometers have been working on the Minkowski space, which has become more interesting especially with Einstein's relativity theory. The curves theory in Euclidean and Minkowski spaces occupies a large place. In Euclidean 3-space (or Minkowski 3-space), a helix is defined as a curve whose tangent lines make a constant angle with a fixed direction, and whose curvature and torsion are nonzero. Based on this definition, definitions of other types of the helices such as general helix, slant helix or null helix are given. If the principal normal vector field of a curve makes a constant angle with a fixed direction, that curve is called a slant helix. A null helix in Minkowski 3-space is a null curve with constant lightlike curvature, [13, 19].

There are lots of studies on slant helices and null helices, $[1,6,8,10,11$, $12,15,28]$. The frames constructed on a curve γ are tools to determine the characteristic features of the curve. One of them, Frenet frame $\{T, N, B\}$, consists of tangent, principal normal and binormal vectors of a regular curve in E^{3}, respectively. Through these vectors, the curvatures (κ and τ) of the curve can obtained. In 1975, the frame $\left\{T, N_{1}, N_{2}\right\}$ of a regular curve γ in E^{3} was defined by Bishop and it was called Bishop frame or relatively parallel adapted frame, [4]. One of the tools used where the Frenet frame of a curve does not work is the Bishop frame. In this frame, since the vector fields N_{1} and N_{2} are col-linear with the tangent vector field T at every point of the curve γ. The normal vector fields N_{1} and N_{2} are called relatively parallel vector fields. The Bishop frame works well even at points where the first Frenet

[^0]curvature function κ of a curve vanishes, where the Frenet frame does not work. The studies on various Bishop frames such as type-1, type-2, N-type in 3 or 4 dimensional Euclidean or Minkowski spaces continue to produce solutions for single point curves, $[7,9,14,16,18,21,22,24,26,30,29]$. Besides, the null Cartan curve and its Bishop frame in Minkowski spaces E_{1}^{3} and E_{1}^{4} are studied in $[2,3,5,6,10,11,12,15,16,17,20,27]$. In this study, we obtained (k, m) - type slant helices for a null Cartan curve with the Bishop frame in E_{1}^{4}.

2. Preliminaries

Minkowski space-time E_{1}^{4} is the real vector space E^{4} equipped with the standard flat metric $\langle.$, . \rangle defined by

$$
\langle\tilde{\xi}, \xi\rangle=-\tilde{\xi}_{1} \xi_{1}+\tilde{\xi}_{2} \xi_{2}+\tilde{\xi}_{3} \xi_{3}+\tilde{\xi}_{4} \xi_{4}
$$

for any two vectors $\tilde{\xi}=\left(\tilde{\xi}_{1}, \tilde{\xi}_{2}, \tilde{\xi}_{3}, \tilde{\xi}_{4}\right)$ and $\xi=\left(\xi_{1}, \xi_{2}, \xi_{3}, \xi_{4}\right)$ in $E_{1}^{4} .\langle.,$.$\rangle is$ an indefinite metric, so there are three cases for any vector $\tilde{\xi} \in E_{1}^{4}$: spacelike $(\langle\tilde{\xi}, \tilde{\xi}\rangle>0)$ or $\tilde{\xi}=0$, timelike $(\langle\tilde{\xi}, \tilde{\xi}\rangle<0)$ or null (lightlike) $(\langle\tilde{\xi}, \tilde{\xi}\rangle=0)$, [25]. $\|\tilde{\xi}\|=\sqrt{|\langle\tilde{\xi}, \tilde{\xi}\rangle|}$ is called as norm of the vector $\tilde{\xi} \in E_{1}^{4}$. Similarly, a curve $\gamma: I \rightarrow E_{1}^{4}$ has the characterization that all its tangent vectors have. Besides, a curve with the parameterization specified by the pseudo arc function

$$
s(t)=\int_{0}^{t} \sqrt{\left\|\gamma^{\prime \prime}(u)\right\|} d u
$$

is called a null Cartan curve, [5]. We know that the first and second curvature functions of a curve in 3 -dimensional spaces have a important role in defining the physical and geometric properties of that curve. For null Cartan curves in E_{1}^{4}, these quantities are also defined as the first, second and third Cartan curvatures and these curvatures are denoted by k_{1}, k_{2}, k_{3}, respectively. The Frenet frame of the non-geodesic null Cartan curve γ consists of the orthonormal vectors $\left\{T, N, B_{1}, B_{2}\right\}$. The Frenet frame equations are as follows [23]:

$$
\begin{aligned}
& \nabla_{T} T=k_{1} N, \\
& \nabla_{T} N=-k_{2} T+k_{1} B_{1}, \\
& \nabla_{T} B_{1}=-k_{2} N+k_{3} B_{2}, \\
& \nabla_{T} B_{2}=k_{3} T,
\end{aligned}
$$

where $k_{1}=1, k_{2}$ and k_{3} are arbitrary functions. Hence there are the following equalities for the Frenet frame $\left\{T, N, B_{1}, B_{2}\right\}$ of null Cartan curve γ :

$$
\begin{gathered}
\langle T, T\rangle=\langle T, N\rangle=\left\langle T, B_{2}\right\rangle=\left\langle N, B_{1}\right\rangle=\left\langle N, B_{2}\right\rangle=\left\langle B_{1}, B_{1}\right\rangle=\left\langle B_{1}, B_{2}\right\rangle=0, \\
\langle N, N\rangle=\left\langle B_{2}, B_{2}\right\rangle=1, \\
\left\langle T, B_{1}\right\rangle=-1 .
\end{gathered}
$$

According to the Cartan curvatures k_{1}, k_{2}, k_{3}, two type of Bishop frames are defined. In this study, we use the following Bishop frame with $k_{1}=0, k_{2}, k_{3}$ be arbitrary functions. The Bishop frame of the null Cartan curve γ consists of the orthonormal vectors $\left\{T_{1}, N_{1}, N_{2}, N_{3}\right\}$. The Bishop frame equations are as follows [23]:

$$
\begin{align*}
& \nabla T_{1} T_{1}=\sigma_{2} T_{1}+\sigma_{1} N_{1}-\sigma_{3} N_{3}, \\
& \nabla T_{1} N_{1}=\sigma_{1} N_{2}, \\
& \nabla T_{1} N_{2}=-\sigma_{2} N_{2}, \tag{1}\\
& \nabla T_{1} N_{3}=-\sigma_{3} N_{2},
\end{align*}
$$

where the first, second and third Bishop curvatures are given the following equations, respectively:

$$
\begin{aligned}
\sigma_{1} & =\sin \theta, \\
\sigma_{2} & =\frac{k_{3}-\theta^{\prime \prime}}{\theta^{\prime}} \\
\sigma_{3} & =\cos \theta
\end{aligned}
$$

where $\theta^{\prime} \neq 0$ and

$$
2 \theta^{\prime}\left(\theta^{\prime \prime \prime}-k_{3}^{\prime}\right)+2 \theta^{\prime \prime}\left(k_{3}-\theta^{\prime \prime}\right)+\theta^{\prime 4}-\left(k_{3}-\theta^{\prime \prime}\right)^{2}-2 k_{2} \theta^{2}=0
$$

Here, we also have

$$
\begin{gathered}
\left\langle T_{1}, T_{1}\right\rangle=\left\langle T_{1}, N_{1}\right\rangle=\left\langle T_{1}, N_{3}\right\rangle=\left\langle N_{1}, N_{2}\right\rangle=\left\langle N_{1}, N_{3}\right\rangle=\left\langle N_{2}, N_{2}\right\rangle=\left\langle N_{2}, N_{3}\right\rangle=0, \\
\left\langle N_{1}, N_{1}\right\rangle=\left\langle N_{3}, N_{3}\right\rangle=1, \\
\left\langle T_{1}, N_{2}\right\rangle=-1 .
\end{gathered}
$$

Definition 2.1. Let γ be a unit speed regular curve in E_{1}^{4} and $\left\{\Upsilon_{1}, \Upsilon_{2}, \Upsilon_{3}, \Upsilon_{4}\right\}$ be the Frenet frame of γ. If there is a non-zero fixed vector field $U \in E_{1}^{4}$ satisfying $\left\langle\Upsilon_{k}, U\right\rangle=\lambda$ and $\left\langle\Upsilon_{m}, U\right\rangle=\mu$, (where λ, μ are constant), then γ is called (k, m) - type slant helix, for $1 \leq k, m \leq 4, k \neq m$. The fixed vector U is on axis of (k, m)-type slant helix, [3].

Here if we denote $\Upsilon_{1}=T, \Upsilon_{2}=N, \Upsilon_{3}=B_{1}, \Upsilon_{4}=B_{2}$, we can write $U=\omega_{1} T+\omega_{2} N+\omega_{3} B_{1}+\omega_{4} B_{2}$, where $\omega_{i}=\omega_{i}(s)$ are differentiable functions of s.

3. (k, m)-Type Slant Helices For The Null Cartan Curve With The Bishop Frame in E_{1}^{4}

Theorem 3.1. Let γ be a null Cartan curve with $k_{1}=1$ and the arbitrary functions k_{2}, k_{3} in E_{1}^{4} and the Bishop frame of γ be $\left\{T_{1}, N_{1}, N_{2}, N_{3}\right\}$. If γ is a $(1,2)$-type slant helix and $\sigma_{1}, \sigma_{2}, \sigma_{3} \neq 0$, the following relation is available:

$$
\begin{equation*}
c_{1} \sigma_{2}+c_{2} \sigma_{1}=c \sigma_{3} \tag{2}
\end{equation*}
$$

here $c, c_{1}, c_{2} \in \mathbb{R}$.

Proof. Let γ be a $(1,2)$-type slant helix. There are $c_{1}, c_{2} \in \mathbb{R}$, such that

$$
\begin{align*}
& \left\langle T_{1}, v\right\rangle=c_{1}, \tag{3}\\
& \left\langle N_{1}, v\right\rangle=c_{2} . \tag{4}
\end{align*}
$$

If we take the derivative of both sides of (3), use the expressions (1), (3) and (4), we get

$$
\begin{equation*}
\left\langle N_{3}, v\right\rangle=\frac{c_{1} \sigma_{2}+c_{2} \sigma_{1}}{\sigma_{3}} \tag{5}
\end{equation*}
$$

Similarly, if we take the derivative of both sides of (4) and use (1), we get

$$
\begin{equation*}
\left\langle N_{2}, v\right\rangle=0 \tag{6}
\end{equation*}
$$

If we take the derivative of both sides of (5) and consider the expression (6), we get

$$
\left(\frac{c_{1} \sigma_{2}+c_{2} \sigma_{1}}{\sigma_{3}}\right)^{\prime}=0
$$

or the expression (2).
Theorem 3.2. Let γ be a null Cartan curve with $k_{1}=1$ and the arbitrary functions k_{2}, k_{3} in E_{1}^{4} and the Bishop frame of γ be $\left\{T_{1}, N_{1}, N_{2}, N_{3}\right\}$. If γ is a (1,3)-type slant helix and $\triangle=\sigma_{1} \sigma_{3}^{\prime}-\sigma_{1}^{\prime} \sigma_{3} \neq 0$, the following relations are available:

$$
\begin{equation*}
\left\langle N_{1}, v\right\rangle=\frac{\sigma_{3}\left(-\sigma_{1}^{2}+\sigma_{2} \sigma_{3}\right)}{\sigma_{1} \sigma_{3}^{\prime}-\sigma_{1}^{\prime} \sigma_{3}} c_{3} \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\langle N_{3}, v\right\rangle=\frac{\sigma_{1}\left(-\sigma_{1}^{2}+\sigma_{2} \sigma_{3}\right)}{\sigma_{1} \sigma_{3}^{\prime}-\sigma_{1}^{\prime} \sigma_{3}} c_{3} \tag{8}
\end{equation*}
$$

here $c_{3} \in \mathbb{R}$.
Proof. Let γ be a $(1,3)$-type slant helix. There are $c_{1}, c_{3} \in \mathbb{R}$, such that

$$
\begin{align*}
& \left\langle T_{1}, v\right\rangle=c_{1} \tag{9}\\
& \left\langle N_{2}, v\right\rangle=c_{3} \tag{10}
\end{align*}
$$

If we take the derivative of both sides of (9), use the expressions (1) and (9), we get

$$
\begin{equation*}
\sigma_{1}\left\langle N_{1}, v\right\rangle-\sigma_{3}\left\langle N_{3}, v\right\rangle=-c_{1} \sigma_{2} \tag{11}
\end{equation*}
$$

Similarly, if we take the derivative of both sides of (10) and use the expression (10), we have

$$
\begin{equation*}
\sigma_{2}=0 \tag{12}
\end{equation*}
$$

If we substitute (12) in (11) and take the derivative of the resulting expression, we get

$$
\sigma_{1}^{\prime}\left\langle N_{1}, v\right\rangle-\sigma_{3}^{\prime}\left\langle N_{3}, v\right\rangle=\left(-\sigma_{1}^{2}+\sigma_{2} \sigma_{3}\right) c_{3} .
$$

Since the expressions (11) and (12) are a grammar system and the equation

$$
\Delta=\left|\begin{array}{ll}
\sigma_{1} & \sigma_{3} \\
\sigma_{1}^{\prime} & \sigma_{3}^{\prime}
\end{array}\right| \neq 0
$$

is given in the hypothesis, the solution of this system is:

$$
\triangle_{1}=\left|\begin{array}{cc}
0 & \sigma_{3} \\
-\left(\sigma_{1}^{2}+\sigma_{2} \sigma_{3}\right) c_{3} & \sigma_{3}^{\prime}
\end{array}\right|=\sigma_{3}\left(\sigma_{1}^{2}+\sigma_{2} \sigma_{3}\right) c_{3}
$$

and

$$
\triangle_{2}=\left|\begin{array}{cc}
\sigma_{1} & 0 \\
\sigma_{1}^{\prime} & -\left(\sigma_{1}^{2}+\sigma_{2} \sigma_{3}\right) c_{3}
\end{array}\right|=-\sigma_{1}\left(\sigma_{1}^{2}+\sigma_{2} \sigma_{3}\right) c_{3} .
$$

So, from the equations

$$
\left\langle N_{1}, v\right\rangle=\frac{\triangle_{1}}{\triangle} \quad \text { and } \quad\left\langle N_{3}, v\right\rangle=\frac{\triangle_{2}}{\triangle}
$$

we obtain the expressions (7) and (8).
Theorem 3.3. Let γ be a null Cartan curve with $k_{1}=1$ and the arbitrary functions k_{2}, k_{3} in E_{1}^{4} and the Bishop frame of γ be $\left\{T_{1}, N_{1}, N_{2}, N_{3}\right\}$. If γ is a $(1,4)$-type slant helix and $\sigma_{1}, \sigma_{2}, \sigma_{3} \neq 0$, the following relation is available:

$$
\begin{equation*}
-c_{1} \sigma_{2}+c_{4} \sigma_{3}=c \sigma_{1}, \tag{13}
\end{equation*}
$$

here $c, c_{1}, c_{4} \in \mathbb{R}$.
Proof. Let γ be a $(1,4)$-type slant helix. There are $c_{1}, c_{4} \in \mathbb{R}$, such that

$$
\begin{align*}
& \left\langle T_{1}, v\right\rangle=c_{1} \tag{14}\\
& \left\langle N_{3}, v\right\rangle=c_{4} . \tag{15}
\end{align*}
$$

If we take the derivative of both sides of (14), use the expressions (1) and (15), we get

$$
\begin{equation*}
\left\langle N_{1}, v\right\rangle=\frac{-c_{1} \sigma_{2}+c_{4} \sigma_{3}}{\sigma_{1}} \tag{16}
\end{equation*}
$$

Similarly, if we take the derivative of both sides of (15) and use (1), we get

$$
\begin{equation*}
\left\langle N_{2}, v\right\rangle=0 . \tag{17}
\end{equation*}
$$

And, if we take the derivative of both sides of (16), use the expressions (1) and (17), we get

$$
\left(\frac{-c_{1} \sigma_{2}+c_{4} \sigma_{3}}{\sigma_{1}}\right)^{\prime}=0
$$

or the expression (13).
Theorem 3.4. Let γ be a null Cartan curve with $k_{1}=1$ and the arbitrary functions k_{2}, k_{3} in E_{1}^{4} and the Bishop frame of γ be $\left\{T_{1}, N_{1}, N_{2}, N_{3}\right\}$. If γ is a $(2,3)$-type slant helix and $\sigma_{1}, \sigma_{2}, \sigma_{3} \neq 0$, the following relation is available:

$$
\begin{equation*}
\sigma_{1}=\sigma_{2}=0 \tag{18}
\end{equation*}
$$

Proof. Let γ be a $(2,3)$-type slant helix. There are $c_{2}, c_{3} \in \mathbb{R}$, such that

$$
\begin{align*}
& \left\langle N_{1}, v\right\rangle=c_{2} \tag{19}\\
& \left\langle N_{2}, v\right\rangle=c_{3} \tag{20}
\end{align*}
$$

If we take the derivative of both sides of the expressions (19) and (20), use the expressions (1), (19) and (20), we get the expression (18).

Theorem 3.5. Let γ be a null Cartan curve with $k_{1}=1$ and the arbitrary functions k_{2}, k_{3} in E_{1}^{4} and the Bishop frame of γ be $\left\{T_{1}, N_{1}, N_{2}, N_{3}\right\}$. If γ is a $(2,4)$-type slant helix and $\left\langle N_{2}, v\right\rangle=$ constant, the following relation is available:

$$
\sigma_{1}=\sigma_{2}=\sigma_{3}=0
$$

Proof. Let γ be a (2,3)-type slant helix. There are $c_{2}, c_{4} \in \mathbb{R}$, such that

$$
\begin{align*}
\left\langle N_{1}, v\right\rangle & =c_{2} \tag{21}\\
\left\langle N_{3}, v\right\rangle & =c_{4} . \tag{22}
\end{align*}
$$

If we take the derivative of both sides of the expressions (21) and (22), use (1) and consider the equation $\left\langle N_{2}, v\right\rangle=$ constant, we get $\sigma_{1}=\sigma_{3}=0$. On the other hand, if we take the derivative of both sides of $\left\langle N_{2}, v\right\rangle=$ constant and use (1), we get $\sigma_{2}=0$.

Theorem 3.6. Let γ be a null Cartan curve with $k_{1}=1$ and the arbitrary functions k_{2}, k_{3} in E_{1}^{4} and the Bishop frame of γ be $\left\{T_{1}, N_{1}, N_{2}, N_{3}\right\}$. If γ is a $(3,4)$-type slant helix, the following relation is available:

$$
\begin{equation*}
\sigma_{2}=\sigma_{3}=0 \tag{23}
\end{equation*}
$$

Proof. Let γ be a (3,4)-type slant helix. So, there are $c_{3}, c_{4} \in \mathbb{R}$, such that

$$
\begin{align*}
\left\langle N_{2}, v\right\rangle & =c_{3} \tag{24}\\
\left\langle N_{3}, v\right\rangle & =c_{4} . \tag{25}
\end{align*}
$$

If we take the derivative of both sides of the expressions (24) and (25), use the expressions (1) and (24), we get the expression (23).

Theorem 3.7. Let γ be a null Cartan curve with $k_{1}=1, k_{3}=0$ and the arbitrary function k_{2} in E_{1}^{4} and the Bishop frame of γ be $\left\{T_{1}, N_{1}, N_{2}, N_{3}\right\}$. If the curve γ is a type-1 slant helix and $\sigma_{1}=\sigma_{2} \neq 0, \gamma$ is a type- 2 also slant curve.

Proof. Let γ be a type- 1 slant helix. There is $c_{1} \in \mathbb{R}$, such that

$$
\begin{equation*}
\left\langle T_{1}, v\right\rangle=c_{1} . \tag{26}
\end{equation*}
$$

If we take the derivative of both sides of (26), consider the hypothesis, we get

$$
\left\langle N_{1}, v\right\rangle=c_{1} .
$$

So, γ is a type- 2 slant curve.

Theorem 3.8. Let γ be a null Cartan curve with $k_{1}=1$ and the arbitrary function k_{2}, k_{3} in E_{1}^{4} and the Bishop frame of γ be $\left\{T_{1}, N_{1}, N_{2}, N_{3}\right\}$. If γ is a $(1,2)$-type slant helix and $\sigma_{1}=\sigma_{2}=\sigma_{3} \neq 0, \gamma$ is also a type- 4 slant curve.

Proof. Let γ be a $(1,2)$-type slant helix. We have the expressions (3) and (4). If we take the derivative of both sides of (3), use the expressions (1), (3) and (4) we get the expression (5). If we consider $\sigma_{1}=\sigma_{2}=\sigma_{3} \neq 0$, from the expression (5), we get

$$
\left\langle N_{3}, v\right\rangle=\text { constant } .
$$

So, γ is a type- 4 slant curve.
Theorem 3.9. Let γ be a null Cartan curve with $k_{1}=1$ and the arbitrary function k_{2}, k_{3} in E_{1}^{4} and the Bishop frame of γ be $\left\{T_{1}, N_{1}, N_{2}, N_{3}\right\}$. If γ is a $(1,4)$-type slant helix and $\sigma_{1}=\sigma_{2}=\sigma_{3} \neq 0, \gamma$ is also a type- 2 slant curve.

Proof. Let γ be a (1,4) -type slant helix. The expressions (14) and (15), and therefore the expression (16) are obtained. If we substitute $\sigma_{1}=\sigma_{2}=\sigma_{3}$ in the expression (16), we get

$$
\left\langle N_{1}, v\right\rangle=\text { constant } .
$$

So, γ is a type- 2 slant curve.
Theorem 3.10. Let γ be a null Cartan curve with $k_{1}=1$ and the arbitrary function k_{2}, k_{3} in E_{1}^{4} and the Bishop frame of γ be $\left\{T_{1}, N_{1}, N_{2}, N_{3}\right\}$. If γ is a $(2,4)$-type slant helix and $\sigma_{1} \neq 0, \sigma_{3} \neq 0$, then $\sigma_{2}=0$ or $\sigma_{2} \neq 0$.

Proof. Let γ be a (2,4)-type slant helix. The expressions (21) and (22) are obtained. If we take the derivative of both sides of the expressions (21) and (22), use the Bishop frame and consider $\sigma_{1} \neq 0, \sigma_{3} \neq 0$, we get

$$
\begin{equation*}
\left\langle N_{2}, v\right\rangle=0 . \tag{27}
\end{equation*}
$$

If we take the derivative of both sides of (27) and use the Bishop frame, we get $\sigma_{2}=0$ or $\sigma_{2} \neq 0$.

4. Conclusions and Discussion

The Bishop frame of a null Cartan curve with null Cartan curvature in Minkowski space E_{1}^{4} is defined in two ways, [27]. In this study, the theories on (k, m) -type slant helices are studied, especially considering the Bishop frame of a null Cartan curve with $k_{1}=1$ and the arbitrary functions k_{2}, k_{3}. But (k, m)-type slant helices of the Bishop frame of a null Cartan curve with $k_{1}=1, k_{3}=0$ and arbitrary function k_{2} is still an open problem.

References

[1] B. Aksan and S. Gür Mazlum, On the pole indicatrix curve of the spacelike Salkowski curve with timelike principal normal in Lorentzian 3-space, Gümüşhane University Journal of Science 12 (2022), 1168-1179.
[2] H. Balgetir, M. Bektaş, and J. Inoguchi, Null Bertrand curves in Minkowski 3-space and their characterizations, Note Mat. 23 (2014), 7-13.
[3] M. Bektaş and M. Y. Yılmaz, (k, m)-type slant helices for partially null and pseudo null curves in Minkowski space, Applied Mathematics and Nonlinear Sciences 5 (2020), 515-520.
[4] L. R. Bishop, There is more than one way to frame a curve, Amer. Math. Monthly 82 (1975), 246-251.
[5] W. B. Bonnor, Null curves in a Minkowski space-time, Tensor 20 (1969), 229-242.
[6] J. H. Choi and Y. H. Kim, Note on null helices in E_{1}^{3}, Bull. Korean Math. Soc. 50 (2013), 885-899.
[7] E. Damar, N. Yüksel, and A. T. Vanl, The ruled surfaces according to type-2 Bishop frame in E^{3}, In Int. Math. Forum, 12 (2017), 133-143.
[8] K. L. Duggal and D. H. Jin, Null Curves and Hypersurfaces of Semi-Riemannian Manifolds, World Scientific, Singapore, 2007.
[9] M. Erdoğdu, Parallel frame of non-lightlike curves in Minkowski space-time, Int. J. Geom. Methods Mod. Phys. 12 (2015), Article ID: 1550109, 16 pp.
[10] A. Ferrandez, A. Gimenez, and P. Lucas, Null helices in Lorentzian space forms, Int. J. Mod. Phys. A, 16 (2001), 4845-4863.
[11] A. Ferrandez, A. Gimenez, and P. Lucas, Null generalized helices in Lorentz-Minkowski spaces, J. Phys. A: Math. Gen. 35 (2002), 8243-8251.
[12] A. Ferrandez, A. Gimenez, and P. Lucas, Null helices and degenerate curves in Lorentzian spaces, Differential Geom. Valencia 2001 (2002), 143-156.
[13] A. Ferrandez, A. Gimenez, and P. Lucas, Null generalized helices and the BetchovDa Rios equation in Lorentz-Minkowski spaces, Publicaciones de la RSME, 6 (2004), 49-54.
[14] F. Gökçelik, Z. Bozkurt, İ. Gök, F. N. Ekmekci, and Y. Yaylı, Parallel transport frame in 4-dimensional Euclidean space E^{4}, Caspian J. Math. Sci. 3 (2014), 91-103.
[15] F. Gökçelik and İ. Gök, Null W-slant helices in E_{1}^{3}, J. Math. Anal. Appl. 420 (2014), 222-241.
[16] M. Grbovic and E. Nesovic, On the Bishop frames of pseudo null and null Cartan curves in Minkowski 3-space, J. Math. Anal. Appl. 461 (2018), 219-233.
[17] M. Grbovic and E. Nesovic, On Backlund transformation and vortex filament equation for null Cartan curve in Minkowski 3-space, Math. Phys. Anal. Geom. 19 (2016), 1-15.
[18] N. Gürbüz, Moving non-null curves according to Bishop frame in Minkowski 3-space, Int. J. Geom. Meth. Mod. Phys. 12 (2015), Article ID: 1550052, 15 pp.
[19] J. I. Inoguchi and S. W. Lee, Null curves in Minkowski 3-space, Int. Electron. J. Geom. 1 (2008), 40-83.
[20] K. İlarslan and E. Nešović, On Bishop frame of a null Cartan curve in Minkowski space-time, Int. J. of Geom. Meth. Mod. Phys. 15 (2018), 1850142.
[21] O. Keskin and Y. Yaylı, An application of N-Bishop frame to spherical images for direction curves, Int. J. Geom. Methods Mod. Phys. 14 (2017), Article ID: 1750162, 21 pp .
[22] İ. Kişi and G. Öztürk, A new approach to canal surface with parallel transport frame, Int. J. Geom. Meth. Mod. Phys. 14 (2017), Article ID: 1750026, 16 pp.
[23] T, Körpinar and R. C. Demirkol, Curvature and torsion dependent energy of elastica and nonelastica for a lightlike curve in the Minkowski space, Ukrainian Mathematical Journal 72 (2021), 1267-1279.
[24] T. Körpınar, V. Asil, and S. Baş, Characterizing inextensible flows of timelike curves according to Bishop frame in Minkowski Space, J. Vector. Relativ. 5 (2010), 18-25.
[25] B. O'Neill, Semi-Riemannian Geometry with Applications to Relativity, Academic Press, New York, 1983.
[26] M. Özdemir and A. A. Ergin, Parallel frame of non-lightlike curves, Missouri J. Math. Sci. 20 (2008), 127-137.
[27] J. Sun and D. H. Pei, Null Cartan Bertrand curves of AW(k)-type in Minkowski 4space, Phys. Lett. A 376 (2012), 2230-2233.
[28] S. Şenyurt, S. Gür, and E. Ozyilmaz, The Frenet vectors and the geodesic curvatures of spherical indicatrix of the timelike Salkowski curve in Minkowski 3-space, Journal of Advanced Research in Dynamical and Control Systems, 7 (2015), 20-42.
[29] S. Yılmaz, Position vectors of some special space-like curves according to Bishop frame in Minkowski space E_{1}^{3}, Sci. Magna 5 (2009), 48-50.
[30] S. Yılmaz and M. Turgut, A new version of Bishop frame and an application to spherical images, J. Math. Anal. Appl. 371 (2010), 764-776.

Sümeyye Gür Mazlum

Department of Computer Technology, Gümüşhane University, Gümüşhane 29000, Türkiye.
E-mail: sumeyyegur@gumushane.edu.tr
Mehmet Bektaş
Department of Mathematics, Firat University, Elazığ 23000, Türkiye.
E-mail: mbektas@firat.edu.tr

[^0]: Received August 12, 2022. Revised April 30, 2023. Accepted May 5, 2023.
 2020 Mathematics Subject Classification. 53A35, 53C40, 53C50.
 Key words and phrases. Minkowski space-time, null Cartan curve, Bishop frame.
 *Corresponding author

