DOI QR코드

DOI QR Code

High purity C3A synthesis method and effect of CaCO3 on C3A initial hydration reaction

고순도 C3A 합성 방법 및 CaCO3가 C3A 초기 수화 반응에 미치는 영향

  • Hye-Jin Yu (Korea Institute of Ceramic Engineering and Technology, Carbon Neutral Materials Center) ;
  • Woo Sung Yum (Korea Institute of Ceramic Engineering and Technology, Carbon Neutral Materials Center)
  • 유혜진 (한국세라믹기술원 탄소중립소재센터) ;
  • 염우성 (한국세라믹기술원 탄소중립소재센터)
  • Received : 2023.11.17
  • Accepted : 2023.11.29
  • Published : 2023.12.31

Abstract

In this study, various experimental parameters were investigated for high-purity C3A synthesis. As a results of experiment, it was verified that the calcined temperature was the most important parameter for the synthesis of high-purity C3A. In addition, more synthesis time was needed when large amount of C3A synthesis to achieve high-purity. Meanwhile, the C3A blended with CaCO3 showed different reaction products compared to normal cement because C15 and C30 had monocarbocaluminate as a reaction product at early stage of hydration. Furthermore, the production amount and formation rate of monocarboaluminate formation was different varying with the CaCO3 a mounts.

본 연구에서는 고순도 C3A 합성을 위해 다양한 실험 변수를 설정한 뒤 그에 따른 영향 인자를 확인하였다. 실험 결과 고순도 C3A 합성을 위해서는 소성 온도가 가장 중요한 인자라고 판단되었으며, 합성량이 증가할 경우 소성 시간을 증가시켜야 한다고 판단되었다. 또한, 탄산칼슘이 C3A의 초기 수화 반응에 미치는 영향을 확인한 결과 일반 시멘트와는 다르게 초기 반응 생성물로 모노카보알루미네이트가 생성되었으며, 수화 24시간 경과 후 모노카보알루미네이트가 헤미카보알루미네이트로 변환되는 것이 확인되었다. 또한, 탄산칼슘 함량에 따라 모노카보알루미네이트가 생성되는 양이나 속도가 상이한 것을 확인하였다.

Keywords

Acknowledgement

이 연구는 2023년도 산업통산자원부 및 산업기술평가관리원(KEIT) 연구비 지원에 의한 연구임(RS-2023-00263550).

References

  1. E. Benhelal, G. Zahedi, E. Shamsaei and A. Bahadori, "Global strategies and potentials to curb CO2 emissions in cement industry", J. Clean. Prod. 51 (2013) 142.
  2. M. Taylor, C. Tam and D. Gielen, "Energy efficiency and CO2 emissions from the global cement industry", IEA-WBCSD (2006) 61.
  3. R. Jaagri, A. Aboulayt, S. Alam and Y. Roziere, "Natural hydraulic lime for blended cement mortars: Behavior from fresh to hardened states", Cem. Concr. Res. 120 (2019) 52.
  4. P.K. Mehta and P.J.M. Monteiro, "Concrete: microstructure, properties, and materials", 3rd ed., (McGraw-Hill Education, New York, 2014) p. 191.
  5. A.M. Neville, "Properties of concrete", Vol. 4. (Longman, London, 1995) p. 245.
  6. H.FW. Taylor, "Cement chemistry" Vol. 2. (Thomas Telford, London, 1997) p. 82.
  7. J.W. Bullard, H.M. Jennings, R.A. Livingston, A. Nonat, G.W. Scherer, J.S. Schweitzer and J.J. Thomas, "Mechanisms of cement hydration", Cem. Concr. Res. 41 (2011) 1208.
  8. A. Wesselsky and O.M. Jensen, "Synthesis of pure Portland cement phases", Cem. Concr. Res. 39 (2009) 39.
  9. A.G. De la Torre and M.G. Aranda, "Accuracy in Rietveld quantitative phase analysis of Portland cements", J. Appl. Cry. 36 (2003) 1169.
  10. M. Regourd, "Crystal chemistry of Portland cement phases Structure and Performance of Cements", Appl. Science 35 (1984) 109.
  11. M.E. Saraya, "Stopping of cement hydration by various methos", J. HBRC 6 (2010) 46.
  12. V.N. Phaneuf, "Synthesis, Characterization and Application of Mayenite", (Clemson University, Clemson, 2021) p. 121.
  13. A.V. Kapishnikov, R.M. Kenzhin, A.P. Koskin, A.M. Volodin and P.V. Geydt, "Mayenite synthesis from hydroxide precursors: Structure formation and active sites on its surface", Materials 15 (2022) 778.
  14. L. Scheinherrova, J. Krejsova, M. Benes, M. Steffek and R. Cerny, "Laboratory synthesis of C3A on the kilogram scle: Preliminary results", J. Phys. 2628 (2023) 1.
  15. J.D. Bapat, "Mineral admixture in cement and concrete", (CRC press, Boca Raton, 2012) p. 45.