DOI QR코드

DOI QR Code

MgO가 첨가된 (Ca,Sr)(Zr,Ti)O3의 결정구조, 미세구조 및 저손실 유전특성

Crystal structure, microstructure, and low-loss dielectric property of MgO-added (Ca,Sr)(Zr,Ti)O3

  • 이도혁 (경상국립대학교 나노.신소재공학부 세라믹공학전공) ;
  • 문경석 (경상국립대학교 나노.신소재공학부 세라믹공학전공)
  • Do-Hyeok Lee (School of Materials Science & Engineering, Gyeongsang National University) ;
  • Kyoung-Seok Moon (School of Materials Science & Engineering, Gyeongsang National University)
  • 투고 : 2023.10.17
  • 심사 : 2023.11.06
  • 발행 : 2023.12.31

초록

마이크로파 유전체 적용을 위해 (Ca, Sr)(Zr, Ti)O3 (CSZT) 계에서 MgO 첨가에 따른 결정 구조, 미세 구조, 및 유전 특성을 연구하였다. 고상 반응법을 통해 합성된 CSZT 분말은 orthorhombic 단일상을 형성하였다. CSZT의 시편을 각각 1200℃, 1300℃ 및 1400℃에서 소결하였고, 소결 후 모든 시편은 orthorhombic 단일상을 확인하였다. 또한 모든 소결 시편은 온도가 증가함에 따라 입자 크기가 증가하였다. 1 mol% MgO를 첨가한 시편의 경우도 소결 이후에 orthorhombic 구조를 갖는 것을 확인하였다. EDS 분석을 통해 1400℃에서 소결 중에 이차상이 형성된 것을 확인하였다. MgO 첨가된 CSZT의 입자크기분포와 치밀화는 첨가하지 않은 경우와 거의 유사했으나, 입자크기분포가 좁아지며 균일해지는 것을 확인하였다. MgO 첨가된 CSZT는 1 k Hz에서 εr = 34.14, tanδ = 0.00047, τε = -3.58 ppm/℃로 우수한 저손실 유전 특성을 가졌다.

Crystal structure, microstructure, and dielectric properties of the (Ca, Sr)(Zr, Ti)O3 (CSZT) system has been studied as a function of sintering temperature and MgO addition for microwave applications. A single-phase CSZT powder with the orthorhombic crystal structure was obtained by the solid-state reaction method. The powder compacts were sintered at 1200℃, 1300℃, and 1400℃ respectively. All the sintered samples had a single-phase orthorhombic crystal structure and grain size increased with sintering temperature. In the case of 1 mol% MgO addition, the orthorhombic crystal structure was the main phase; however, a secondary phase appeared during sintering at 1400℃, as determined by EDS analysis. At 1400℃, the undoped and MgO-doped CSZT had almost similar grain size distribution and densification but the grain size distribution became slightly narrow. The MgO-doped CSZT showed excellent low-loss dielectric properties: εr = 34.14, tanδ = 0.00047, τε = -3.58 ppm/℃ at 1 MHz.

키워드

과제정보

본 연구는 산업통상자원부의 소재부품패키지형기술개발사업(Grant No. 20010938) 및 과학기술정보통신부의 정보통신기획평가원(IITP) 과제(Grant No. 2021-0-00793)의 지원을 받아 수행된 연구 결과로 이에 감사드립니다.

참고문헌

  1. S. Nomura, "Ceramics for microwave dielectric resonator", Ferroelectrics 49 (1983) 61.
  2. T. Negas, G. Yeager, S. Bell, N. Coats and I. Minis, "BaTi4O9/Ba2Ti9O20-based ceramics resurrected for modern microwave applications", Am. Ceram. Soc. Bull. 72 (1993) 80.
  3. C.-L. Huang, M.-H. Weng and G.-M. Shan, "Effect of V2O5 and CuO additives on sintering behavior and microwave dielectric properties of BiNbO4 ceramics", J. Mater. Sci. 35 (2000) 5443.
  4. C.-L. Huang, C.-L. Pan and S.-J. Shium, "Liquid phase sintering of MgTiO3-CaTiO3 microwave dielectric ceramics", Mater. Chem. Phys. 78 (2003) 111.
  5. X. Chen, D. Liu, R. Hou, X. Hu and X. Liu, "Microstructures and microwave dielectric characteristics of Ca (Zn1/3Nb2/3)O3 complex perovskite ceramics", J. Am. Ceram. Soc. 87 (2004) 2208.
  6. M.-H. Kim, Y.-H. Jeong, S. Nahm, H.-T. Kim and H.-J. Lee, "Effect of B2O3 and CuO additives on the sintering temperature and microwave dielectric properties of Ba (Zn1/3Nb2/3)O3 ceramics", J. Eur. Ceram. Soc. 26 (2006) 2139.
  7. S. George and M. T. Sebastian, "Synthesis and microwave dielectric properties of novel temperature stable high Q, Li2ATi3O8 (A=Mg, Zn) ceramics", J. Am. Ceram. Soc. 93 (2010) 2164.
  8. S.B. Narang and S. Bahel, "Low loss dielectric ceramics for microwave applications: a review", J. Ceram. Process. Res. 11 (2010) 316.
  9. R. Bhuyan, T.S. Kumar and D. Pamu, "Liquid phase effect of Bi2O3 additive on densification, microstructure and microwave dielectric properties of Mg2TiO4 ceramics", Ferroelectrics 516 (2017) 173.
  10. J. Guo, A.L. Baker, H. Guo, M. Lanagan and C.A. Randall, "Cold sintering process: a new era for ceramic packaging and microwave device development", J. Am. Ceram. Soc. 100 (2017) 669.
  11. D. Zhou, L.-X. Pang, D.-W. Wang, C. Li, B.-B. Jin and I.M. Reaney, "High permittivity and low loss microwave dielectrics suitable for 5G resonators and low temperature co-fired ceramic architecture", J. Mater. Chem. C 5 (2017) 10094.
  12. M. Pollet, S. Marinel and G. Desgardin, "CaZrO3, a Nico-sinterable dielectric material for base metal-multilayer ceramic capacitor applications", J. Eur. Ceram. Soc. 24 (2004) 119.
  13. H. Shin, S.W. Lee and H.S. Jung, "Sintering and dielectric properties of Li2O-B2O3-Al2O3-SiO2 glass-added (Ca0.7Sr0.3O)1.03(Ti0.1Zr0.9)O2 for copper electrode", Int. J. Appl. Ceram. Technol. 10 (2013) 716.
  14. S.K. Thatikonda, D. Goswami and P. Dobbidi, "Effects of CeO2 nanoparticles and annealing temperature on the microwave dielectric properties of MgTiO3 ceramics", Ceram. Int. 40 (2014) 1125.
  15. J.-M. C. Y.-D. Li and Y.-C. Lee, "Dielectric properties and microstructures of (CaxSr1-x)ZrO3 ceramics", J. Ceram. Process. Res. 19 (2018) 461.
  16. D. Wang, D. Zhou, K. Song, A. Feteira, C.A. Randall and I.M. Reaney, "Cold-sintered C0G multilayer ceramic capacitors", Adv. Electronic Mater. 5 (2019) 1900025.
  17. H. Ohsato, J. Varghese, A. Kan, J.S. Kim, I. Kagomiya, H. Ogawa, M.T. Sebastian and H. Jantunen, "Volume crystallization and microwave dielectric properties of indialite/cordierite glass by TiO2 addition", Ceram. Int. 47 (2021) 2735.
  18. W. Lou , M. Mao, K. Song, K. Xu , B. Liu , W. Li, B. Yang, Z. Qi, J. Zhao and S. Sun, "Low permittivity cordierite-based microwave dielectric ceramics for 5G/6G telecommunications", J. Eur. Ceram. Soc. 42 (2022) 2820.
  19. Z. Tan, K. Song, H.B. Bafrooei, B. Liu, J. Wu, J. Xu, H. Lin and D. Wang, "The effects of TiO2 addition on microwave dielectric properties of Y3MgAl3SiO12 ceramic for 5G application", Ceram. Int. 46 (2020) 15665.
  20. J. Plourde, D. Linn, H. O'Bryan Jr and J. Thomson Jr, "Ba2Ti9O20 as a microwave dielectric resonator", J. Am. Ceram. Soc. 58 (1975) 418.
  21. D. Zhou, L.-X. Pang, D.-W. Wang, Z.-M. Qi and I.M. Reaney, "High quality factor, ultralow sintering temperature Li6B4O9 microwave dielectric ceramics with u ltralow density for antenna su bstrates", ACS Su st. Chem. Eng. 6 (2018) 11138.
  22. Z.-Y. Zou, X.-K. Lan, W.-Z. Lu, G.-F. Fan, X.-H. Wang, X.-C. Wang, P. Fu and W. Lei, "Novel high Curie temperature Ba2ZnSi2O7 ferroelectrics with low-permittivity microwave dielectric properties", Ceram. Int. 42 (2016) 16387.
  23. H. Zheng, G.C. De Gyorgyfalva, R. Quimby, H. Bagshaw, R. Ubic, I. Reaney and J. Yarwood, "Raman spectroscopy of B-site order-disorder in CaTiO3-based microwave ceramics", J. Eur. Ceram. Soc. 23 (2003) 2653.
  24. M.-H. Kim, J.-B. Lim, S. Nahm, J.-H. Paik and H.-J. Lee, "Low temperature sintering of BaCu (B2O5)-added BaO-Re2O3-TiO2 (Re=Sm, Nd) ceramics", J. Eu r. Ceram. Soc. 27 (2007) 3033.
  25. S. Nomura, K. Toyama and K. Kaneta, "Ba (Mg1/3Ta2/3)O3 ceramics with temperature-stable high dielectric constant and low microwave loss", Jpn. J. Appl. Phys. 21 (1982) L624.
  26. H.J. Jo, J.S. Kim and E.S. Kim, "Microwave dielectric properties of MgTiO3-based ceramics", Ceram. Int. 41 (2015) S530.
  27. M.Z. Jhou and J.H. Jean, "Low-fire processing of microwave BaTi4O9 dielectric with BaO-ZnO-B2O3 glass", J. Am. Ceram. Soc. 89 (2006) 786.
  28. T. Takada, S.F. Wang, S. Yoshikawa, S.J. Jang and R.E. Newnham, "Effects of glass additions on (Zr, Sn)TiO4 for microwave applications", J. Am. Ceram. Soc. 77 (1994) 2485.
  29. D.F. Hennings, "Dielectric materials for sintering in reducing atmospheres", J. Eur. Ceram. Soc. 21 (2001) 1637.
  30. W.-J. Lee, A. Wakahara and B.-H. Kim, "Decreasing of CaZrO3 sintering temperature with glass frit addition", Ceram. Int. 31 (2005) 521.
  31. M. Pollet, S. Marinel and F. Roulland, "High decrease in CaZrO3 sintering temperatu re using complex fluoride fluxes", J. Eur. Ceram. Soc. 25 (2005) 2773.
  32. C. Prasanth, H.P. Kumar, R. Pazhani, S. Solomon and J. Thomas, "Synthesis, characterization and microwave dielectric properties of nanocrystalline CaZrO3 ceramics", J. Alloys Compd. 464 (2008) 306.
  33. H. Lee, J.R. Kim, M.J. Lanagan, S. Trolier-McKinstry and C.A. Randall, "High-energy density dielectrics and capacitors for elevated temperatures: Ca (Zr, Ti)O3", J. Am. Ceram. Soc. 96 (2013) 1209.
  34. T. Yamaguchi, Y. Komatsu, T. Otobe and Y. Murakami, "Newly developed ternary (Ca, Sr, Ba) zirconate ceramic system for microwave resonators", Ferroelectrics 27 (1980) 273.
  35. M.D. Hill, D.B. Cruickshank and I.A. MacFarlane, "Perspective on ceramic materials for 5G wireless communication systems", Appl. Phys. Lett. 118 (2021).
  36. S.-J.L. Kang, M.G. Lee and S.M. An, "Microstructural evolution during sintering with control of the interface structure", J. Am. Ceram. Soc. 92 (2009) 1464.
  37. W.-J. Choi and K.-S. Moon, "Microstructure and dielectric properties in the La2O3-doped BaTiO3 system", J. Korean Cryst. Growth Cryst. Technol. 30 (2020) 103.