DOI QR코드

DOI QR Code

A global-scale assessment of agricultural droughts and their relation to global crop prices

전 지구 농업가뭄 발생특성 및 곡물가격과의 상관성 분석

  • Kim, Daeha (Department of Civil Engineering, Jeonbuk National Univeristy) ;
  • Lee, Hyun-Ju (Climate Prediction Department, APEC Climate Center)
  • 김대하 (전북대학교 토목환경자원에너지공학부) ;
  • 이현주 (APEC 기후센터 예측운영과)
  • Received : 2023.10.18
  • Accepted : 2023.11.22
  • Published : 2023.12.31

Abstract

While South Korea's dependence on imported grains is very high, droughts impacts from exporting countries have been overlooked. Using the Evaporative Stress Index (ESI), this study globally analyzed frequency, extent, and long-term trends of agricultural droughts and their relation to natural oscillations and global crop prices. Results showed that global-scale correlations were found between ESI and soil moisture anomalies, and they were particularly strong in crop cultivation areas. The high correlations in crop cultivation areas imply a strong land-atmosphere coupling, which can lead to relatively large yield losses with a minor soil moisture deficits. ESI showed a clear decreasing trend in crop cultivation areas from 1991 to 2022, and this trend may continue due to global warming. The sharp increases in the grain prices in 2012 and 2022 were likely related to increased drought areas in major grain-exporting countries, and they seemed to elevate South Korea's producer price index. This study suggests the need for drought risk management for grain-exporting countries to reduce socioeconomic impacts in South Korea.

2020년 기준 한국의 곡물자급률은 20.2%에 불과하지만 곡물수출국에서 발생하는 가뭄이 국내에 미치는 영향은 아직 면밀히 분석되지 않았다. 본 연구에서는 증발산 기반 가뭄지수인 Evaporative Stress Index (ESI)를 이용해 세계 주요 곡물생산지역의 농업가뭄의 발생빈도, 장기추세, 자연진동과의 상관성을 분석하였다. 또한 국제 곡물거래가격과 작물생산지역의 가뭄면적을 비교하여 해외에서 발생한 가뭄이 한국 경제에 미치는 영향을 정성적으로 평가하였다. ERA5 기후재분석자료로 산정된 ESI는 전지구적으로 토양수분과 강한 상관성을 보였으며 특히 작물재배 지역에서의 둘의 상관성이 매우 강하게 나타났다. 작물재배지역에서의 높은 상관성은 강한 지면-대기결합을 의미하며, 이 때문에 작은 토양수분 부족이 상대적으로 큰 수확량 손실로 연결될 가능성이 크다. 1991-2022 기간 작물재배지역에서 ESI는 뚜렷한 감소추세를 보였으며 지구온난화와 함께 가뭄면적이 증가할 가능성이 있다. 2012년과 2022년에 급격히 상승한 국제곡물가격은 수출국에서 발생한 대규모 가뭄과 밀접한 관계가 있는 것으로 분석되었으며 한국의 생산자물가지수를 상승시킨 주요 원인 중 하나로 판단된다. 본 연구는 해외지역에서 일어나는 가뭄의 영향을 줄이기 위해 감시와 위험관리 전략이 필요함을 시사한다.

Keywords

Acknowledgement

본 결과물은 환경부의 재원으로 한국환경산업기술원의 가뭄대응 물관리 혁신기술 개발사업의 지원을 받아 연구되었습니다(RS-2023-00230286).

References

  1. Allen, R.G., Pereira, L.S., Raes, D., and Smith, M. (1998). Crop evapotranspiration - Guidelines for computing crop water requirements. Irrigation and drainage paper No. 56. Food and Agricultural Organization of the United Nations, Rome, Italy.
  2. Anderson, M.C., Zolin, C.A., Sentelhas, P.C., Hain, C.R., Semmens, K., Yilmaz, M.T., Gao, F., Otkin, J.A., and Tetrault, R. (2016). "The Evaporative Stress Index as an indicator of agricultural drought in Brazil: An assessment based on crop yield impacts." Remote Sensing of Environment, Vol. 174, pp. 82-99. https://doi.org/10.1016/j.rse.2015.11.034
  3. Bennetzen, E.H., Smith, P., and Porter, J.R. (2016). "Agricultural production and greenhouse gas emissions from world regions - The major trends over 40 years." Global Environmental Change, Vol. 37, pp. 43-55. https://doi.org/10.1016/j.gloenvcha.2015.12.004
  4. Boyer, J.S., Byrne, P., Cassman, K.G., Cooper, M., Delmer, D., Greene, T., Gruis, F., Habben, J., Hausmann, N., Kenny, N., and Lafitte, R. (2013). "The US drought of 2012 in perspective: A call to action." Global Food Security, Vol. 2, pp. 139-143. https://doi.org/10.1016/j.gfs.2013.08.002
  5. Brutsaert, W. (2017). "Global land surface evaporation trend during the past half century: Corroboration by Clausius-Clapeyron scaling." Advances in Water Resources, Vol. 106, pp. 3-5. https://doi.org/10.1016/j.advwatres.2016.08.014
  6. Chung, S.O., Rodriguez-Diaz, J.A., Weatherhead, E.K., and Knox, J.W. (2011). "Climate change impacts on water for irrigating paddy rice in South Korea." Irrigation and Drainage, Vol. 60, pp. 263-273. https://doi.org/10.1002/ird.559
  7. Cook, E.R., Seager, R., Cane, M.A., and Stahle, D.W. (2007). "North American droughts: Reconstructions, causes, and consequences." Earth-Science Reviews, Vol. 81, pp. 93-134. https://doi.org/10.1016/j.earscirev.2006.12.002
  8. Cottrell, R.S., Nash, K.L., Halpern, B.S., Remenyi, T.A., Corney, S.P., Fleming, A., Fulton, E.A., Hornborg, S., Johne, A., Watson, R.A., and Blanchard, J.L. (2019). "Food production shocks across land and sea." Nature Sustainability, Vol. 2, pp. 130-137. https://doi.org/10.1038/s41893-018-0210-1
  9. D'Odorico, P., Carr, J., Dalin, C., Dell'Angelo, J., Konar, M., Laio, F., Ridolfi, L., Rosa, L., Suweis, S., Tamea, S., and Tuninetti, M. (2019). "Global virtual water trade and the hydrological cycle: Patterns, drivers, and socio-environmental impacts." Environmental Research Letters, Vol. 14, 053001.
  10. Dang, Q., and Konar, M. (2018). "Trade openness and domestic water use." Water Resources Research, Vol. 54, pp. 4-18. https://doi.org/10.1002/2017WR021102
  11. De Winne, J., and Peersman, G. (2021). "The adverse consequences of global harvest and weather disruptions on economic activity." Nature Climate Change, Vol. 11, pp. 665-672. https://doi.org/10.1038/s41558-021-01102-w
  12. He, X., Estes, L., Konar, M., Tian, D., Anghileri, D., Baylis, K., Evans, T.P., and Sheffield, J. (2019). "Integrated approaches to understanding and reducing drought impact on food security across scales." Current Opinion in Environmental Sustainability, Vol. 40, pp. 43-54. https://doi.org/10.1016/j.cosust.2019.09.006
  13. Hunt, E., Femia, F., Werrell, C., Christian, J.I., Otkin, J.A., Basara, J., Anderson, M., White, T., Hain, C., Randall, R., and Mc- Gaughey, K. (2021). "Agricultural and food security impacts from the 2010 Russia flash drought." Weather and Climate Extremes, Vol. 34, 100383.
  14. Intergovernmental Panel on Climate Change (IPCC) (2021). Summary for policymakers. In: climate change 2021: The physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Geneva, Switzerland.
  15. Intergovernmental Panel on Climate Change (IPCC) (2023). Summary for policymakers. In: Climate change 2023: Synthesis report. Contribution of Working Groups I, II, and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Geneva, Switzerland.
  16. Kim, D., and Rhee, J. (2016). "A drought index based on actual evapotranspiration from the Bouchet hypothesis." Geophysical Research Letters, Vol. 43, pp. 10277-10285. https://doi.org/10.1002/2016GL070302
  17. Kim, D., Chun, J.A., Yeo, J.-Y., and Ha, K.-J. (2023). "Divergent flash drought risks indicated by evaporative stress and soil moisture projections under warming scenarios." Environmental Research Letters, Vol. 18, 094023.
  18. Kim, D., Ha, K.J., and Yeo, J.H. (2021a). "New drought projections over East Asia using evapotranspiration deficits from the CMIP6 warming scenarios." Earth Future, Vol. 9, e2020EF001697.
  19. Kim, D., Lee, W.-S., Kim, S.T., and Chun, J.A. (2019). "Historical drought assessment over the contiguous United States using the generalized complementary principle of evapotranspiration." Water Resources Research, Vol. 55, pp. 6244-6267. https://doi.org/10.1029/2019WR024991
  20. Kim, D.H., Yoo, C., and Kim, T.W. (2011). "Application of spatial EOF and multivariate time series model for evaluating agricultural drought vulnerability in Korea." Advances in Water Resources, Vol. 34, pp. 340-350. https://doi.org/10.1016/j.advwatres.2010.12.010
  21. Kim, J., Kim, S., Lee, Y., and Choi, J. (2021b). Analysis and challenges of imported grain value chains. Policy Research Report, Rural Development Administration of Korea.
  22. Kim, S.M., Kang, M.S., and Jang, M.W. (2018). "Assessment of agricultural drought vulnerability to climate change at a municipal level in South Korea." Paddy and Water Environment, Vol. 16, pp. 699-714. https://doi.org/10.1007/s10333-018-0661-z
  23. Kim, T.W., Valdes, J.B., and Yoo, C. (2003). "Nonparametric approach for estimating return periods of droughts in arid regions." Journal of Hydrologic Engineering, Vol. 8, pp. 237-246. https://doi.org/10.1061/(ASCE)1084-0699(2003)8:5(237)
  24. Koster, R.D., Mahanama, S.P.P., Yamada, T.J., Balsamo, G., Berg, A.A., Boisserie, M., Dirmeyer, P.A., Doblas-Reyes, F.J., Drewitt, G., Gordon, C.T., and Guo, Z. (2011). "The second phase of the global land-atmosphere coupling experiment: soil moisture contributions to subseasonal forecast skill." Journal of Hydrometeorology, Vol. 12, pp. 805-822. https://doi.org/10.1175/2011JHM1365.1
  25. Lee, S.H., Yoo, S.H., Choi, J.Y., and Shin, A. (2016). "Evaluation of the dependency and intensity of the virtual water trade in Korea." Irrigation and Drainage, Vol. 65, pp. 48-56. https://doi.org/10.1002/ird.1957
  26. Lesk, C., Coffel, E., Winter, J., Ray, D., Zscheischler, J., Seneviratne, S.I., and Horton, R. (2021). "Stronger temperature-moisture couplings exacerbate the impact of climate warming on global crop yields." Nature Food, Vol. 2, pp. 683-691. https://doi.org/10.1038/s43016-021-00341-6
  27. Liu, Z., Wang, T., Li, C., Yang, W., and Yang, H. (2023). "A physically-based potential evapotranspiration model for global water availability projections." Journal of Hydrology, Vol. 622, 129767.
  28. M\a, N., Szilagyi, J., and Zhang, Y. (2021). "Calibration-free complementary relationship estimates terrestrial evapotranspiration globally." Water Resources Research, Vol. 57, No. 9, e2021 WR029691.
  29. McCabe, G.J., Palecki, M.A., and Betancourt, J.L. (2004). "Pacific and Atlantic Ocean influences on multidecadal drought frequency in the United States." Proceedings of the National Academy of Sciences of the United States of America, Vol. 101, pp. 4136-4141. https://doi.org/10.1073/pnas.0306738101
  30. Milly, P.C., and Dunne, K.A. (2016). "Potential evapotranspiration and continental drying." Nature Climate Change, Vol. 6, pp. 946-949. https://doi.org/10.1038/nclimate3046
  31. Ministry of Environment (ME) (2021). The first national water management plan (2021-2030). Inter-Agency Joint Report.
  32. Nam, W.H., Hayes, M.J., Svoboda, M.D., Tadesse, T., and Wilhite, D.A. (2015). "Drought hazard assessment in the context of climate change for South Korea." Agricultural Water Management, Vol. 160, pp. 106-117. https://doi.org/10.1016/j.agwat.2015.06.029
  33. Nguyen, H., Wheeler, M.C., Otkin, J.A., Cowan, T., Frost, A., and Stone, R. (2019). "Using the Evaporative Stress Index to monitor flash drought in Australia." Environmental Research Letters, Vol. 14, 064016.
  34. Odey, G., Adelodun, B., Lee, S., Adeyemi, K.A., and Choi, K.S. (2023). "Assessing the impact of food trade centric on land, water, and food security in South Korea." Journal of Environmental Management, Vol. 332, 117319.
  35. Otkin, J.A., Anderson, M.C., Hain, C., and Svoboda, M. (2014). "Examining the relationship between drought development and rapid changes in the Evaporative Stress Index." Journal of Hydrometeorology, Vol. 15, pp. 938-956. https://doi.org/10.1175/JHM-D-13-0110.1
  36. Parker, T., Gallant, A., Hobbins, M., and Hoffmann, D. (2021). "Flash drought in Australia and its relationship to evaporative demand." Environmental Research Letters, Vol. 16, 064033.
  37. Potapov, P., Turubanova, S., Hansen, M.C., Tyukavina, A., Zalles, V., Khan, A., Song, X.P., Pickens, A., Shen, Q., and Cortez, J. (2022). "Global maps of cropland extent and change show accelerated cropland expansion in the twenty-first century." Nature Food, Vol. 3, pp. 19-28.
  38. Rhee, J., and Cho, J. (2016). "Future changes in drought characteristics: Regional analysis for South Korea under CMIP5 projections." Journal of Hydrometeorology, Vol. 17, pp. 437-451. https://doi.org/10.1175/JHM-D-15-0027.1
  39. Rippey, B.R. (2015). "The US drought of 2012." Weather and Climate Extremes, Vol. 10, pp. 57-64. https://doi.org/10.1016/j.wace.2015.10.004
  40. Seo, J., Lee, J., and Kim, H. (2011). Analysis of factors affecting international grain prices and Korea's policy responses. Institute for International Economic Policy Research.
  41. Swann, A.L., Hoffman, F.M., Koven, C.D., and Randerson, J.T. (2016). "Plant responses to increasing CO2 reduce estimates of climate impacts on drought severity." Proceedings of the National Academy of Sciences of the United States of America, Vol. 113, pp. 10019-10024. https://doi.org/10.1073/pnas.1604581113
  42. Tadasse, G., Algieri, B., Kalkuhl, M., and Von Braun, J. (2014). "Drivers and triggers of international food price spikes and volatility." Food Policy, Vol. 47, pp. 59-82. https://doi.org/10.1016/j.foodpol.2013.08.014
  43. Tamea, S., Laio, F., and Ridolfi, L. (2016). "Global effects of local food-production crises: a virtual water perspective." Scientific Reports, Vol. 6, 18803.
  44. Thinda, K.T., Ogundeji, A.A., Belle, J.A., and Ojo, T.O. (2020). "Understanding the adoption of climate change adaptation strategies among smallholder farmers: Evidence from land reform beneficiaries in South Africa." Land Use Policy, Vol. 99, 104858.
  45. Trenberth, K.E., Dai, A., Van Der Schrier, G., Jones, P.D., Barichivich, J., Briffa, K.R., and Sheffield, J. (2014). "Global warming and changes in drought." Nature Climate Change, Vol. 4, pp. 17-22. https://doi.org/10.1038/nclimate2067
  46. Vicente-Serrano, S.M., Lopez-Moreno, J.I., Gimeno, L., Nieto, R., Moran-Tejeda, E., Lorenzo-Lacruz, J., Begueria, S., and Azorin- Molina, C. (2011). "A multiscalar global evaluation of the impact of ENSO on droughts." Journal of Geophysical Research: Atmospheres, Vol. 116, D20109.
  47. Vicente-Serrano, S.M., Miralles, D.G., Dominguez-Castro, F., Azorin- Molina, C., El Kenawy, A., McVicar, T.R., Tomas-Burguera, M., Begueria, S., Maneta, M., and Pena-Gallardo, M. (2018). "Global assessment of the Standardized Evapotranspiration Deficit Index (SEDI) for drought analysis and monitoring." Journal of Climate, Vol. 31, pp. 5371-5393. https://doi.org/10.1175/JCLI-D-17-0775.1
  48. Vicente-Serrano, S.M., Miralles, D.G., McDowell, N., Brodribb, T., Dominguez-Castro, F., Leung, R., and Koppa, A. (2022). "The uncertain role of rising atmospheric CO2 on global plant transpiration." Earth-Sciences Reviews, Vol. 230, 104055.
  49. von Braun, J., and Tadesse, G. (2012). Global food price volatility and spikes: An overview of costs, causes, and solutions. ZEF-Discussion Papers on Development Policy, p. 161.
  50. Vremec, M., Forstner, V., Herndl, M., Collenteur, R., Schaumberger, A., and Birk, S. (2023). "Sensitivity of evapotranspiration and seepage to elevated atmospheric CO2 from lysimeter experiments in a montane grassland." Journal of Hydrology, Vol. 617, 128875.
  51. Yang, Y., Roderick, M.L., Zhang, S., McVicar, T.R., and Donohue, R.J. (2019). "Hydrologic implications of vegetation response to elevated CO2 in climate projections." Nature Climate Change, Vol. 9, pp. 44-48. https://doi.org/10.1038/s41558-018-0361-0
  52. Zhou, S., Williams, A.P., Berg, A.M., Cook, B.I., Zhang, Y., Hagemann, S., Lorenz, R., Seneviratne, S.I., and Gentine, P. (2019). "Land-atmosphere feedbacks exacerbate concurrent soil drought and atmospheric aridity." Proceedings of the National Academy of Sciences of the United States of America, Vol. 116, pp. 18848-18853. https://doi.org/10.1073/pnas.1904955116