DOI QR코드

DOI QR Code

The acute toxicity and efficacy evaluation against Aeromonas salmonicida of aquatic drugs oxolinic acid, neomycin-oxytetracycline, and florfenicol in guppy (Poecilia reticulata)

구피(Poecilia reticulata)에서 수산용의약품 oxolinic acid, neomycin-oxytetracycline, florfenicol의 급성독성 및 Aeromonas salmonicida에 대한 약효 평가

  • Jun Sung Bae (Departments of Aquatic Life Medicine, College of Ocean Science and Technology, Kunsan National University) ;
  • Chae Won Lee (Departments of Aquatic Life Medicine, College of Ocean Science and Technology, Kunsan National University) ;
  • Chan Yeong Yang (Departments of Aquatic Life Medicine, College of Ocean Science and Technology, Kunsan National University) ;
  • Eun Ha Jeong (Departments of Aquatic Life Medicine, College of Ocean Science and Technology, Kunsan National University) ;
  • Areum Kim (Departments of Aquatic Life Medicine, College of Ocean Science and Technology, Kunsan National University) ;
  • Young-Sik Chae (Departments of Aquatic Life Medicine, College of Ocean Science and Technology, Kunsan National University) ;
  • Jung-Jin Park (Samyang anipharm co.,ltd.) ;
  • Kwan Ha Park (Departments of Aquatic Life Medicine, College of Ocean Science and Technology, Kunsan National University)
  • 배준성 (군산대학교 해양과학대학 수산생명의학과) ;
  • 이채원 (군산대학교 해양과학대학 수산생명의학과) ;
  • 양찬영 (군산대학교 해양과학대학 수산생명의학과) ;
  • 정은하 (군산대학교 해양과학대학 수산생명의학과) ;
  • 김아름 (군산대학교 해양과학대학 수산생명의학과) ;
  • 채영식 (군산대학교 해양과학대학 수산생명의학과) ;
  • 박정진 ((주)삼양애니팜) ;
  • 박관하 (군산대학교 해양과학대학 수산생명의학과)
  • Received : 2023.11.20
  • Accepted : 2023.12.14
  • Published : 2023.12.31

Abstract

This study evaluated the acute toxicity induced by oxolinic acid (OA), neomycin-oxytetracycline combination (NEO-OTC) and florfenicol (FF) administered to guppy (Poecilia reticulata) by comparing standard formulations with commercial preparations (COOaqua curinpotion, COOaqua terafinpotion and COOaqua profenpotion, respectively) for ornamental fish at concentrations of 2-4%. NEO-OTC exhibited the highest acute toxicity in guppy, with no difference observed between the pstandard formulation and commercial preparation (LC50 = 126.08 mg/L and 112.44 mg/L, respectively). OA acute toxicity was assessed in the form of sodium salt, with an LC50 of 504.61 mg/L for the standard formulation and a slightly increased toxicity of 316.11 mg/L for the commercial preparation. In contrast, no mortality was observed during the 96-hour exposure period with the standard formulation in the form of oxolinic acid. The acute toxicity of FF was measured to be above 1,000 mg/L for the standard formulation; however, the commercial preparation significantly increased to 158.53 mg/L. These results indicate that toxicity can significantly increase in commercial formulations, especially those with low levels of active ingredients. This is presumed to be attributed to the organic solvents or solubilizing agents present in the commercial preparations, which may enhance toxicity. Additionally, guppy infected with Aeromonas salmonicida were effectively protected against mortality by administering OA, NEO-OTC and FF at concentrations of 50 mg/L, 100 mg/L and 15 mg/L, respectively, for 2 hours and at half the dose for 24 hours. This result indicates that liquid formulations containing low concentrations of antibiotics may partially increase toxicity, but there is no problem in effectively treating diseases in ornamental fish.

본 연구는 구피(Poecilia reticulata)에서 oxolinic acid (OA), neomycin-oxytetracycline 복합제(NEO-OTC) 및 florfenicol (FF)의 급성독성을 96시간 동안 약욕투여하여 96h-LC50으로 평가하였다. 또한 활성성분 함량이 2-4%로 낮은 상업용 제제의 급성독성을 평가하여 표준품과 비교하고, 에로모나스병에 대한 치료 효능을 평가하였다. 구피에서의 급성독성은 NEO-OTC이 126.08 mg/L로 가장 높았다. OA는 염의 형태에 따라서 급성독성의 결과가 크게 상이하였다. Oxolinic acid 형태는 최고 농도인 1,000 mg/L에서도 모든 개체가 생존한 반면, 수산용의약품으로 사용되는 sodium염 형태는 96h-LC50이 504.61 mg/L로 도출되었다. 특히 모든 폐사는 OA가 용출되기 전인 24시간 이내에 발생하였다. FF의 급성독성은 매우 낮아 96h-LC50이 1,000 mg/L 이상으로 도출되었다. 본 연구에서 평가한 OA 및 NEO-OTC 상업용 제제는 산제 형태로, FF 상업용 제제는 액제 형태로 사용되었다. 부형제는 산제의 경우 glucose 및 lactose hydrate가 함량의 대부분을 차지하며, powdered corn syrup이 소량 첨가되었다. 액제의 경우 propylene glycol이 함량의 대부분을 차지하며, N-methylpyrrolidone, polysorbate 80, butylated hydroxy toluene이 소량 첨가되었다. OA 및 NEO-OTC 상업용 제제의 급성독성은 표준품과 큰 차이를 보이지 않았지만, FF 상업용 제제는 현저하게 급성독성이 증가하였고, 그 이유는 아마도 상업용 제제에 함유된 유기용매나 용해보조제가 독성을 강화시키는 것으로 추측된다. OA, NEO-OTC 및 FF 약욕투여는 단시간(2시간) 약욕투여시 각각 50 mg/L, 100 mg/L 및 15 mg/L 농도로, 장시간(24시간) 약욕투여시 각각 25 mg/L, 50 mg/L 및 7.5 mg/L 농도로 에로모나스병을 유의미하게 방어하였다. 이 결과는 급성독성이 발견되지 않는 용량 범위에서 에로모나스병 치료를 위한 용량 및 시간을 제시하였으며, 낮은 농도의 항생제를 포함한 액상제제가 부분적으로 독성을 증가시키기는 하지만 효과적으로 관상어의 질병을 치료하기에는 문제가 없음을 의미한다.

Keywords

References

  1. Abrantes, C. G., Duarte, D. and Reis, C. P.: An overview of pharmaceutical excipients: safe or not safe?. Journal of pharmaceutical sciences, 105(7), 2019-2026, 2016. https://doi.org/10.1016/j.xphs.2016.03.019
  2. Barry, A. L., Jones, R. N., Thornsberry, C., Ayers, L. W., Gerlach, E. H. and Sommers, H. M.: Antibacterial activities of ciprofloxacin, norfloxacin, oxolinic acid, cinoxacin, and nalidixic acid. Antimicrobial Agents and Chemotherapy, 25(5), 633-637, 1984. https://doi.org/10.1128/aac.25.5.633
  3. Black, M. C.: Routes of administration for chemical agents. In The laboratory fish. Academic Press, 2000. https://doi.org/10.1016/B978-012529650-2/50040-8
  4. Carraschi, S. P., Shiogiri, N. S., Venturini, F. P., da Cruz, C., Girio, A. C. F. and Machado Neto, J. G.: Acute Toxicity and Environmental Risk of Oxytetracyline and Florfenicol Antibiotics to Pacu (Piaractus mesopotamicus). Boletim do Instituto de Pesca Sao Paulo, 37(2), 115-122, 2011.
  5. Dowling, P. M.: Chloramphenicol, thiamphenicol, and florfenicol. Antimicrobial therapy in veterinary medicine, 269-277, 2013. https://doi.org/10.1002/9781118675014.ch16
  6. Ehrlich, J., Bartz, Q. R., Smith, R. M., Joslyn, D. A. and Burkholder, P. R.: Chloromycetin, a new antibiotic from a soil actinomycete. Science, 106(2757), 417-417, 1947. https://doi.org/10.1126/science.106.2757.417
  7. Fathima, N., Mamatha, T., Qureshi, H. K., Anitha, N. and Rao, J. V. Drug-excipient interaction and its importance in dosage form development. Journal of applied pharmaceutical science, 1(6), 66-71, 2011.
  8. Fukui, H., Fujihara, Y. and Kano, T.: In vitro and in vivo antibacterial activities of florfenicol, a new fluorinated analog of thiamphenicol, against fish pathogens. Fish Pathology, 22(4), 201-207, 1987. https://doi.org/10.3147/jsfp.22.201
  9. Gavatur, R., Vernuri, N. M. and Chrzan, Z.: Use of Isothermal Microcalorimetry in Pharmaceutical Preformulation Studies Part III. Evaluation of excipient compatibility of a new chemical entity. Journal of Thermal Analysis and Calorimetry, 78(1), 2004. https://doi.org/10.1023/B:JTAN.0000042154.13588.19
  10. Ferreira, C. S. G., Nunes, B. A., de Melo Henriques-Almeida, J. M. and Guilhermino, L.: Acute toxicity of oxytetracycline and florfenicol to the microalgae Tetraselmis chuii and to the crustacean Artemia parthenogenetica. Ecotoxicology and environmental safety, 67(3), 452-458, 2007. https://doi.org/10.1016/j.ecoenv.2006.10.006
  11. Huh, M. D. and Jeong, H. D.: The histological structure and the pathological lesions of gill in teleosts. Korean Journal of Fish Patholgy, 6(1), 65-70, 1993.
  12. Junior, G. B., de Souza, C. F., da Silva, H. N., Bianchini, A. E., Rodrigues, P., da Costa, S. T., Heinzmann, B. M., Cargnelutti, J. F. and Baldisserotto, B.: Combined effect of florfenicol with linalool via bath in combating Aeromonas hydrophila infection in silver catfish (Rhamdia quelen). Aquaculture, 545, 737247, 2021. https://doi.org/10.1016/j.aquaculture.2021.737247
  13. Kedzierewicz, F., Zinutti, C., Hoffman, M. and Maincent, P.: Bioavailability study of tolbutamide β-cyclodextrin inclusion compounds, solid dispersions and bulk powder. International journal of pharmaceutics, 94(1-3), 69-74, 1993. https://doi.org/10.1016/0378-5173(93)90010-D
  14. Kent, R. A., Andersen, D., Caux, P. Y. and Teed, S.: Canadian water quality guidelines for glycols-An ecotoxicological review of glycols and associated aircraft anti-icing and deicing fluids. Environmental Toxicology: An International Journal, 14(5), 481-522, 1999. https://doi.org/10.1002/(SICI)1522-7278(199912)14:5<481::AID-TOX5>3.0.CO;2-8
  15. Lee, J. Y., Kang, Y. J. and Kim, H.: The Verify of Environmental Toxicity of Foam Extinguishing Agents by Fish-Acute Toxicity Test. Journal of the Korean Society of Safety, 30(4), 51-55, 2015. https://doi.org/10.14346/JKOSOS.2015.30.4.51
  16. Lee, S., Kim, C., Liu, X., Lee, S., Kho, Y., Kim, W. K., Kim, P. and Choi, K.: Ecological risk assessment of amoxicillin, enrofloxacin, and neomycin: are their current levels in the freshwater environment safe?. Toxics, 9(8), 196, 2021. https://doi.org/10.3390/toxics9080196
  17. Levet, A., Bordes, C., Clement, Y., Mignon, P., Morell, C., Chermette, H., Marote, P. and Lanteri, P. Acute aquatic toxicity of organic solvents modeled by QSARs. Journal of molecular modeling, 22, 1-14, 2016. https://doi.org/10.1007/s00894-016-3156-0
  18. Lutzhoft, H. C. H., Halling-Sorensen, B. and Jorgensen, S. E.: Algal toxicity of antibacterial agents applied in Danish fish farming. Archives of Environmental Contamination and Toxicology, 36, 1-6, 1999. https://doi.org/10.1007/s002449900435
  19. Mattioli, C. C., Chiste, B. M., Takeshita, N. A., Jonsson, C. M., Ferracini, V. L. and Hisano, H.: Acute Toxicity and Risk Assessment of Florfenicol for Nile Tilapia Larvae. Bulletin of Environmental Contamination and Toxicology, 105, 721-727, 2020. https://doi.org/10.1007/s00128-020-03013-6
  20. Na, Y. K. and Hong, H. S.: The Tissue Injury and Repair by Antibiotics Intramuscular Injection following mixed with Saline and Distilled Water in Rat. Kyunpook University Medical Journal, 39(1), 103-111, 1998.
  21. Noga, E. J.: fish diseases-diagnosis and treatment, 2nd ed., John Wiley and Sons Publications, Ames, Iowa, USA, 2010.
  22. Samuelsen, O. B.: Efficacy of bath-administered flumequine and oxolinic acid in the treatment of vibriosis in small Atlantic halibut. Journal of Aquatic Animal Health, 9(2), 127-131, 1997. https://doi.org/10.1577/1548-8667(1997)009<0127:EOBAFA>2.3.CO;2
  23. Oliveira, R., McDonough, S., Ladewig, J. C., Soares, A. M., Nogueira, A. J. and Domingues, I.: Effects of oxytetracycline and amoxicillin on development and biomarkers activities of zebrafish (Danio rerio). Environmental toxicology and pharmacology, 36(3), 903-912, 2013. https://doi.org/10.1016/j.etap.2013.07.019
  24. Pandit, D. N. and Priya, K.: Assessment of Toxic Nature and Safe dose of Oxytetracycline and Garlic to an Indian Air-breathing Catfish, Clarias batrachus (Linnaeus). Ind. J. Pure App. Biosci, 8(2), 33-37, 2020. http://dx.doi.org/10.18782/2582-2845.8019
  25. Pillard, D. A.: Comparative toxicity of formulated glycol deicers and pure ethylene and propylene glycol to Ceriodaphnia dubia and Pimephales promelas. Environmental Toxicology and Chemistry: An International Journal, 14(2), 311-315, 1995. https://doi.org/10.1002/etc.5620140217
  26. Park, S. and Choi, K.: Hazard assessment of commonly used agricultural antibiotics on aquatic ecosystems. Ecotoxicology, 17, 526-538, 2008. https://doi.org/10.1007/s10646-008-0209-x
  27. Richards, R. M. E., Xing, J. Z. and Mackay, K. M.: Excipient interaction with cetylpyridinium chloride activity in tablet based lozenges. Pharmaceutical research, 13, 1258-1264, 1996. https://doi.org/10.1023/A:1016084824877
  28. Samuelsen, O. B.: Administration of the antibacterial agents flumequine and oxolinic acid to small turbot (Scophthalmus maximus L.) by bath. Journal of Applied Ichthyology, 19(1), 55-58, 2003. https://doi.org/10.1046/j.1439-0426.2003.00352.x
  29. Sandbacka, M., Christianson, I. and Isomaa, B.: The acute toxicity of surfactants on fish cells, Daphnia magna and fish-a comparative study. Toxicology in vitro, 14(1), 61-68, 2000. https://doi.org/10.1016/S0887-2333(99)00083-1
  30. Shiroma, L. S., Bottoli, C. B. G., Jonsson, C. M. and Queiroz, S. C.: Exposure of tilapia (Oreochromis niloticus) to the antibiotic florfenicol in water: determination of the bioconcentration factor and the withdrawal period. Environmental Science and Pollution Research, 28, 39026-39034, 2021. https://doi.org/10.1007/s11356-021-13327-5
  31. Sun, H., Yang, R., Wang, J., Yang, X., Tu, J., Xie, L., Li, C., Lao, Q. and Sun, C. Component-based biocompatibility and safety evaluation of polysorbate 80. RSC advances, 7(25), 15127-15138, 2017. https://doi.org/10.1039/c6ra27242h
  32. Takeshita, N. A., Chiste, B. M., Jonsson, C. M., Mattioli, C. C. and Hisano, H.: Acute toxicity, risk assessment and exposure of Nile tilapia larvae after stress to sub-lethal concentrations of oxytetracycline, Research square, 2022. https://doi.org/10.21203/rs.3.rs-1930839/v1
  33. Tanneberger, K., Rico-Rico, A., Kramer, N. I., Busser, F. J., Hermens, J. L. and Schirmer, K.: Effects of solvents and dosing procedure on chemical toxicity in cell-based in vitro assays. Environmental science and technology, 44(12), 4775-4781, 2010. https://doi.org/10.1021/es100045y
  34. Waksman, S. A. and Lechevalier, H. A.: Neomycin, a new antibiotic active against streptomycin-resistant bacteria, including tuberculosis organisms. Science, 109(2830), 305-307, 1949. https://doi.org/10.1126/science.109.2830.305
  35. Williams, B. J.: Factors which influence synergism by neomycin and oxytetracycline. Applied microbiology, 21(4), 668-672, 1971. https://doi.org/10.1128/ am.21.4.668-672.1971
  36. Williams, B. J.: The effects of neomycin and oxytetracycline alone or combined upon the incidence of salmonellosis in broiler chickens. Poultry Science, 64(8), 1455-1457, 1985. https://doi.org/10.3382/ps.0641455
  37. NIQS (National Fisheries Products Quality Management Service), 수산용의약품 제품 요약 해설집, 32, 2022.
  38. NFRDI (National Fisheries Research and Development Institute), 수산용 의약품 사용안내, 2008.