DOI QR코드

DOI QR Code

5-bromoprotocatechualdehyde suppresses growth of human lung cancer cells through modulation of ROS and the AKT/MAPK signaling pathway

  • Jusnseong Kim (Jeju Marine Research Center, Korea Institute of Ocean Science and Technology (KIOST)) ;
  • Eun-A Kim (Jeju Marine Research Center, Korea Institute of Ocean Science and Technology (KIOST)) ;
  • Nalae Kang (Jeju Marine Research Center, Korea Institute of Ocean Science and Technology (KIOST)) ;
  • Seong-Yeong Heo (Jeju Marine Research Center, Korea Institute of Ocean Science and Technology (KIOST)) ;
  • Soo-Jin Heo (Jeju Marine Research Center, Korea Institute of Ocean Science and Technology (KIOST))
  • Received : 2023.08.07
  • Accepted : 2023.08.25
  • Published : 2023.12.31

Abstract

Early-stage lung cancer is the deadliest form of the disease. In this study, we investigated the anticancer activity of 5-bromoprotocatechualdehyde (BPCA) extracted from the seaweed Polysiphonia morrowii Harvey (P. morrowii) in lung cancer H460 cells. We extracted P. morrowii powder thrice with 80% aqueous methanol and separated the extract using high-performance liquid chromatography. We then tested BPCA's effects on cell viability, apoptosis, reactive oxygen species (ROS) generation, and protein expression Our results showed that BPCA inhibited tumor cell growth and ROS production and induced apoptosis through mitogen-activated protein kinase (MAPK) and AKT signaling pathways in lung cancer cells. When BPCA was combined with hydrogen peroxide, ROS production and apoptosis increased even further due to the regulation of AKT signaling and JNK-MAPKs pathways. These findings suggest that BPCA induces lung-cancer-cell death through ROS-mediated phosphorylation in AKT/MAPK signaling. This could lead to the development of new and effective treatments for early-stage lung cancer.

Keywords

Acknowledgement

This research was supported by a research grants from the Korea Institute of Ocean Science and Technology (PEA0125, PEA0121) and was partially supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government (MSIP) (NO. NRF_2017R1C1B2011398).

References

  1. Blackstock, A. W. and R. Govindan. 2007. Definitive chemoradiation for the treatment of locally advanced non-small-cell lung cancer. Journal of clinical oncology 25(26): 4146-4152.  https://doi.org/10.1200/JCO.2007.12.6581
  2. Bostancioglu, R. B., et al. 2013. Novel ferrocenyl-containing N-acetyl-2-pyrazolines inhibit in vitro angiogenesis and human lung cancer growth by interfering with F-actin stress fiber polimeryzation. Drug and chemical toxicology 36(4): 484-495.  https://doi.org/10.3109/01480545.2013.776579
  3. Che, X.-F., et al. 2013. 2-Aminophenoxazine-3-one-induced apoptosis via generation of reactive oxygen species followed by c-jun N-terminal kinase activation in the human glioblastoma cell line LN229. International journal of oncology 43(5): 1456-1466.  https://doi.org/10.3892/ijo.2013.2088
  4. Choi, I. 2013. Reactive Oxygen Species and Cancer. Hanyang Med Rev 33: 118-122.  https://doi.org/10.7599/hmr.2013.33.2.118
  5. Choi, Y. K., et al. 2018. Bis (3-bromo-4, 5-dihydroxybenzyl) ether, a novel bromophenol from the marine red alga Polysiphonia morrowii that suppresses LPS-induced inflammatory response by inhibiting ROS-mediated ERK signaling pathway in RAW 264.7 macrophages. Biomedicine & pharmacotherapy 103: 1170-1177. 
  6. Dhanasekaran, D. N. and E. P. Reddy 2008. JNK signaling in apoptosis. Oncogene 27(48): 6245-6251.  https://doi.org/10.1038/onc.2008.301
  7. Fang, J. Y. and B. C. Richardson 2005. The MAPK signalling pathways and colorectal cancer. The lancet oncology 6(5): 322-327.  https://doi.org/10.1016/S1470-2045(05)70168-6
  8. Green, D. R. and J. C. Reed 1998. Mitochondria and apoptosis. science281(5381): 1309-1312. 
  9. Hadi, S., et al. 2000. Putative mechanism for anticancer and apoptosis-inducing properties of plant-derived polyphenolic compounds. IUBMBlife50(3): 167-171. 
  10. Je, J.-Y., et al. 2009. Antioxidant activity of a red seaweed Polysiphonia morrowii extract. Food Science and Biotechnology 18(1): 124-129. 
  11. Jemal, A., et al. 2010. Cancer statistics, 2010. CA: a cancer journal for clinicians 60(5): 277-300.  https://doi.org/10.3322/caac.20073
  12. Jena, N. 2012. DNA damage by reactive species: Mechanisms, mutation and repair. Journal of biosciences 37(3): 503-517.  https://doi.org/10.1007/s12038-012-9218-2
  13. Kang, N.-J., et al. 2017. Anti-inflammatory effect of 3-bromo-4, 5-dihydroxybenzaldehyde, a component of polysiphonia morrowii, in vivo and in vitro. Toxicological research 33(4): 325-332.  https://doi.org/10.5487/TR.2017.33.4.325
  14. Kawabe, T. 2004. G2 checkpoint abrogators as anticancer drugs. Molecular cancer therapeutics 3(4): 513-519.  https://doi.org/10.1158/1535-7163.513.3.4
  15. Kinkade, C. W., et al. 2008. Targeting AKT/mTOR and ERK MAPK signaling inhibits hormone-refractory prostate cancer in a preclinical mouse model. The Journal of clinical investigation 118(9): 3051-3064.  https://doi.org/10.1172/JCI34764
  16. Li, H.-b., et al. 2007. Magnolol-lnduced H460 cells deathvia autophagy but not apoptosis. Archives of pharmacal research 30(12): 1566-1574.  https://doi.org/10.1007/BF02977326
  17. Li, L., et al. 2017. Berberine could inhibit thyroid carcinoma cells by inducing mitochondrial apoptosis, G0/G1 cell cycle arrest and suppressing migration via PI3K-AKT and MAPK signaling pathways. Biomedicine & pharmacotherapy 95: 1225-1231. 
  18. Lu, K., et al. 2001. Cryptophycin-induced hyperphosphorylation of Bcl-2, cell cycle arrest and growth inhibition in human H460 NSCLC cells. Cancer chemotherapy and pharmacology 47(2): 170-178.  https://doi.org/10.1007/s002800000210
  19. Mates, J. M., et al. 2012. Oxidative stress in apoptosis and cancer: an update. Archives of toxicology 86(11): 1649-1665.  https://doi.org/10.1007/s00204-012-0906-3
  20. Ouhtit, A., et al. 2013. Simultaneous inhibition of cell-cycle, proliferation, survival, metastatic pathways and induction of apoptosis in breast cancer cells by a phytochemical super-cocktail: genes that underpin its mode of action. Journal of Cancer 4(9): 703. 
  21. Peto, R., et al. 2000. Smoking, smoking cessation, and lung cancer in the UK since 1950: combination of national statistics with two case-control studies. Bmj321(7257): 323-329.  https://doi.org/10.1136/bmj.321.7257.323
  22. Poillet-Perez, L., et al. 2015. Interplay between ROS and autophagy in cancer cells, from tumor initiation to cancer therapy. Redox biology 4: 184-192.  https://doi.org/10.1016/j.redox.2014.12.003
  23. Saji, M., et al. 2011. Akt1 deficiency delays tumor progression, vascular invasion, and distant metastasis in a murine model of thyroid cancer. Oncogene 30(42): 4307-4315.  https://doi.org/10.1038/onc.2011.136
  24. Sankarapandi, S. and J. L. Zweier 1999. Evidence against the generation of free hydroxyl radicals from the interaction of copper, zinc-superoxide dismutase and hydrogen peroxide. Journal of Biological Chemistry 274(49): 34576-34583.  https://doi.org/10.1074/jbc.274.49.34576
  25. Sarbassov, D. D., et al. 2006. Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Molecular cell 22(2): 159-168.  https://doi.org/10.1016/j.molcel.2006.03.029
  26. Tao, F., et al. 2019. The role of herbal bioactive components in mitochondria function and Cancer therapy. Evidence-Based Complementary and Alternative Medicine 2019. 
  27. von Freeden-Jeffry, U., et al. 1995. Lymphopenia in interleukin (IL)-7 gene-deleted mice identifies IL-7 as a nonredundant cytokine. The Journal of experimental medicine 181(4): 1519-1526.  https://doi.org/10.1084/jem.181.4.1519
  28. Weston, C. R. and R. J. Davis 2007. The JNK signal transduction pathway. Current opinion in cell biology 19(2): 142-149.  https://doi.org/10.1016/j.ceb.2007.02.001
  29. Wyllie, A., et al. 1980. Cell death: the significance of apoptosis. International review of cytology, Elsevier. 68: 251-306.  https://doi.org/10.1016/S0074-7696(08)62312-8
  30. Yang, Y., et al. 2016. Mitochondria and mitochondrial ROS in cancer: novel targets for anticancer therapy. Journal of cellular physiology 231(12): 2570-2581.  https://doi.org/10.1002/jcp.25349
  31. Zhou, Y., et al. 2003. Free radical stress in chronic lymph ocytic leukemia cells and its role in cellular sensitivity to ROS-generating anticancer agents. Blood, The Journal of the American Society of