DOI QR코드

DOI QR Code

Effect of Light Intensity on Cell Growth and Carotenoids Production in Chlamydomonas reinhardtii dZL

Chlamydomonas reinhardtii dZL 균주의 광도가 세포 생장과 카로티노이드 생산량에 미치는 영향 연구

  • Seong-Joo Hong (Industry-Academia Interactive R&E Center for Bioprocess Innovation, Inha University) ;
  • Hyunwoo Kim (Department of Biological Engineering, Inha University) ;
  • Jiho Min (Industry-Academia Interactive R&E Center for Bioprocess Innovation, Inha University) ;
  • Hanwool Park (Department of Biological Engineering, Inha University) ;
  • Z-Hun Kim (Huevergreenpharm Inc.) ;
  • Chang Soo Lee (Microbial Research Department, Nakdonggang National Institute of Biological Resources) ;
  • Eonseon Jin (Department of Life Science, Hanyang University) ;
  • Choul-Gyun Lee (Industry-Academia Interactive R&E Center for Bioprocess Innovation, Inha University)
  • 홍성주 (인하대학교 산학융합 인터랙티브 바이오공정 혁신 교육연구단) ;
  • 김현우 (인하대학교 생명공학과) ;
  • 민지호 (인하대학교 산학융합 인터랙티브 바이오공정 혁신 교육연구단) ;
  • 박한울 (인하대학교 생명공학과) ;
  • 김지훈 ((주)휴에버그린팜) ;
  • 이창수 (국립낙동강생물자원관 미생물연구실) ;
  • 진언선 (한양대학교 생명과학과) ;
  • 이철균 (인하대학교 산학융합 인터랙티브 바이오공정 혁신 교육연구단)
  • Received : 2023.08.08
  • Accepted : 2023.11.22
  • Published : 2023.12.31

Abstract

Microalgae, as photosynthetic organisms, possess the ability to produce a diverse array of bioactive compounds. This study focused on the transformant Chlamydomonas reinhardtii dZL and subjected it to cultivation under varying light intensities (60, 120, 180, and 240 µmol/m2/s). Our aim was to assess the impact of light intensity on both microalgal biomass and carotenoid production. The cultivation took place in 80 mL bubble column photobioreactors, specifically the Multi-cultivator. Notably, the culture exposed to 240 µmol/m2/s exhibited the most rapid cell growth, surpassing even the cell concentration achieved at 180 µmol/m2/s by day 8. A detailed analysis of the specific irradiance rate over time unequivocally revealed a sharp decline in growth rates when the rate fell below 2 × 10-10 µmol/cell/s. Although the culture with 60 µmol/m2/s yielded the highest carotenoid content (1.2% of dry weight), the culture exposed to 240 µmol/m2/s recorded the highest carotenoid concentration at 8.9 mg/L owing to its higher biomass. Our findings reveal the critical importance of maintaining a specific irradiance rate above 2 × 10-10 µmol/cell/s to enhance biomass and carotenoid productivity. This study lays the groundwork for defining optimal light intensity conditions applicable to mass culture systems, with the objective of augmenting C. reinhardtii biomass and optimizing carotenoid productivity.

Keywords

Acknowledgement

이 연구는 2022년도 교육부의 재원으로 한국연구재단의 기초연구사업(NRF-2022R1I1A1A01052953)과 환경부의 재원으로 국립낙동강생물자원관에서 지원(NNIBR202303113)을 받아 수행된 연구입니다.

References

  1. Priyadarshani, I., and Rath, B. 2012. Commercial and industrial applications of micro algae-A review. J. algal biomass util. 3, 89-100.
  2. Kim, B., Lee, S.Y., Narasimhan, A.L., Kim, S., and Oh, Y.-K. 2022. Cell disruption and astaxanthin extraction from Haematococcus pluvialis: Recent advances. Biores our. Technol. 343, 126124.
  3. Oh, Y.-K., Kim, S., Ilhamsyah, D.P.A., Lee, S.-G., and Kim, J.R. 2022. Cell disruption and lipid extraction from Chlorella species for biorefinery applications: Recent ad vances. Bioresour. Technol. 366, 128183.
  4. Sasso, S., Pohnert, G., Lohr, M., Mittag, M., and Hertweck, C. 2012. Microalgae in the postgenomic era: a blooming reservoir for new natural products. FEMS Microbiol. Rev. 36, 761-785.
  5. Varela, J.C., Pereira, H., Vila, M., and Leon, R. 2015. Production of carotenoids by microalgae: achievements and challenges. Photosynth. Res. 125, 423-436.
  6. Muller, P., Li, X.-P., and Niyogi, K.K. 2001. Non-photo chemical quenching. A response to excess light energy. Plant Physiol. 125, 1558-1566.
  7. Sandmann, G. 2019. Antioxidant protection from UV-and light-stress related to carotenoid structures. Antioxidant s 8, 219.
  8. Chiu, H.F., Liao, J.Y., Lu, Y.Y., Han, Y.C., Shen, Y.C., Venkatakrishnan, K., Golovinskaia, O., and Wang, C.K. 2017. Anti-proliferative, anti-inflammatory and pro-apoptotic effects of Dunaliella salina on human KB oral carcinoma cells. J. Food Biochem. 41, e12349.
  9. Fimbres-Olivarria, D., Carvajal-Millan, E., Lopez-Elias, J.A., Martinez-Robinson, K.G., Miranda-Baeza, A., Mart inez-Cordova, L.R., Enriquez-Ocana, F., and Valdez-Holguin, J.E. 2018. Chemical characterization and antioxidant activity of sulfated polysaccharides from Navicula sp. Food Hydrocoll. 75, 229-236.
  10. Cezare-Gomes, E.A., Mejia-da-Silva, L.d.C., Perez-Mora, L.S., Matsudo, M.C., Ferreira-Camargo, L.S., Singh, A.K., and de Carvalho, J.C.M. 2019. Potential of microalgae carotenoids for industrial application. Appl. Microbiol. Biotechnol. 188, 602-634.
  11. Wang, S.K., Stiles, A.R., Guo, C., and Liu, C.Z. 2014. Microalgae cultivation in photobioreactors: An overview of light characteristics. Eng. Life Sci. 14, 550-559.
  12. Bechet, Q., Shilton, A., and Guieysse, B. 2013. Modeling the effects of light and temperature on algae growth: state of the art and critical assessment for productivity prediction during outdoor cultivation. Biotechnol. Adv. 31, 1648-1663. https://doi.org/10.1016/j.biotechadv.2013.08.014
  13. Ralph, P.J., and Gademann, R. 2005. Rapid light curves: a powerful tool to assess photosynthetic activity. Aquat. Bot. 82, 222-237.
  14. Imaizumi, Y., Nagao, N., Yusoff, F.M., Taguchi, S., and Toda, T. 2014. Estimation of optimum specific light intensity per cell on a high-cell-density continuous culture of Chlorella zofingiensis not limited by nutrients or CO2. Bioresour. Technol. 162, 53-59. https://doi.org/10.1016/j.biortech.2014.03.123
  15. Yoon, J.H., Shin, J.-H., and Park, T.H. 2008. Characterization of factors influencing the growth of Anabaena variabilis in a bubble column reactor. Bioresour. Technol. 99, 1204-1210.
  16. Koller, A.P., Lowe, H., Schmid, V., Mundt, S., and Weuster-Botz, D. 2017. Model-supported phototrophic growth studies with Scenedesmus obtusiusculus in a flat-plate photobioreactor. Biotechnol. Bioeng. 114, 308-320.
  17. Lee, C.-G. 1999. Calculation of light penetration depth in photobioreactors. Biotechnol. Bioprocess Eng. 4, 78-81.
  18. Song, I., Kim, J., Baek, K., Choi, Y., Shin, B., and Jin, E. 2020. The generation of metabolic changes for the production of high-purity zeaxanthin mediated by CRISPR-Cas9 in Chlamydomonas reinhardtii. Microb. Cell. Fact. 19, 1-9.
  19. Hanwool, P., Jiho, M., Seonghoon, Y., Seong-Joo, H., EonSeon, J., and Choul-Gyun, L. 2020. Enhancement of biomass productivity of the zeaxanthin producing Microalga Chlamydomonas reinhardtii dZL in 100 L flat-panel photobioreactors by changing initial cell density. KSBB J. 35, 78-83.
  20. Kim, Z.-H., Park, H., Ryu, Y.-J., Shin, D.-W., Hong, S.-J., Tran, H.-L., Lim, S.-M., and Lee, C.-G. 2015. Algal biomass and biodiesel production by utilizing the nutrients dissolved in seawater using semi-permeable membrane photobioreactors. J. Appl. Phycol. 27, 1763-1773.
  21. Yoon, J.H., Choi, S.S., and Park, T.H. 2012. The cultivation of Anabaena variabilis in a bubble column operating under bubbly and slug flows. Bioresour. Technol. 110, 430-436.
  22. Lichtenthaler, H.K. 1987. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. In: (eds), Methods in enzymology, vol 148, Elsevier, pp 350-382.
  23. Rajendran, A., Anderson, G.A., Yan, X., and Gent, S. 2013. Light in a Photobioreactor. American Society of Agricultural and Biological Engineers. SD14-007.
  24. Solovchenko, A., and Chekanov, K. 2014. Production of carotenoids using microalgae cultivated in photobioreactors. In: H.N.M. Kee-Yoeup Paek, Jian-Jiang Zhong(eds), Production of biomass and bioactive compounds using bioreactor technology, Springer Dordrecht, pp 63-91.
  25. Zuccaro, G., Yousuf, A., Pollio, A., and Steyer, J.-P. 2020. Microalgae cultivation systems. In: A. Yousuf (eds), Microalgae cultivation for biofuels production, Acade mic Press, pp 11-29.
  26. Heining, M., and Buchholz, R. 2015. Photobioreactors with internal illumination-a survey and comparison. Biotechnol. J. 10, 1131-1137.
  27. Carvalho, A.P., Silva, S.O., Baptista, J.M., and Malcata, F.X. 2011. Light requirements in microalgal photobioreactors: an overview of biophotonic aspects. Appl. Microbiol. Biotechnol. 89, 1275-1288.
  28. Choi, S.-L., Suh, I.S., and Lee, C.-G. 2003. Lumostatic operation of bubble column photobioreactors for Haematococcus pluvialis cultures using a specific light uptake rate as a control parameter. Enzyme Microb. Technol. 33, 403-409.
  29. Lee, H.-S., Seo, M.-W., Kim, Z.H., and Lee, C.-G. 2006. Determining the best specific light uptake rates for the lumostatic cultures in bubble column photobioreactors. Enzyme Microb. Technol. 39, 447-452.
  30. Fae Neto, W.A., Dosselli, R., Kennington, W.J., and Tomkins, J.L. 2023. Correlated responses to selection for different cell size in Chlamydomonas reinhardtii using divergent evolutionary pathways. J. Appl. Phycol. 35, 1621-1634.
  31. Park, Y.H., Park, J., Choi, J.S., Kim, H.S., Choi, J.S., and Choi, Y.-E. 2023. Ultrasonic Treatment Enhanced Astaxanthin Production of Haematococcus pluvialis. J. Microbiol. 61, 633-639.
  32. Bohne, F., and Linden, H. 2002. Regulation of carotenoid biosynthesis genes in response to light in Chlamydomonas reinhardtii. Biochim. Biophys. Acta-Gene Struct. Expression. 1579, 26-34.