References
- Ritchie, H., Rosado, P., and Roser, M., 2020, "Greenhouse gas emissions", Our World in Data, https://ourworldindata.org/greenhouse-gas-emissions.
- Intergovernmental Panel on Climate Change (IPCC), 2007, "Chapter 2: Changes in atmospheric constituents and radiative forcing", In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, UK.
- Intergovernmental Panel on Climate Change (IPCC), 2014, "Chapter 8: Anthropogenic and natural radiative forcing", In: Climate Change 2013: The Physical Science Basis: Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge Uninersity Press, UK.
- Global Methane Pledge, Accessed 7 January 2023, https://www.globalmethanepledge.org/.
- Henard, C.A., Smith, H., Dowe, N., Kalyuzhnaya, M.G., Pienkos, P.T., and Guarnieri, M.T., 2016, "Bioconversion of methane to lactate by an obligate methanotrophic bacterium", Scientific Reports, 6, 21585.
- Lee, J.K., Kim, S., Kim, W., Kim, S., Cha, S., Moon, H., Hur, D.H., Kim, S.Y., Na, J.G., and Lee, J.W., et al., 2019, "Efficient production of D-lactate from methane in a lactate-tolerant strain of Methylomonas sp. DH-1 generated by adaptive laboratory evolution", Biotechnology for Biofuels, 12, 234.
- Nguyen, D.T.N., Lee, O.K., Hadiyati, S., Affifah, A.N., Kim, M.S., and Lee, E.Y., 2019, "Metabolic engineering of the type I methanotroph Methylomonas sp. DH-1 for production of succinate from methane", Metabolic Engineering, 54, 170-179. https://doi.org/10.1016/j.ymben.2019.03.013
- Kang, C.K., Jeong, S.W., Jo, J.H., Park, J.H., Kim, M.S., Yang, J.E., and Choi, Y.J., 2021, "High-Level squalene production from methane using a metabolically engineered Methylomonas sp. DH-1 strain", ACS Sustainable Chem. Eng., 9(48), 16485-16493. https://doi.org/10.1021/acssuschemeng.1c06776
- Helm, J., Wendlandt, K.D., Jechorek, M., and Stottmeister, U., 2008, "Potassium deficiency results in accumulation of ultra-high molecular weight poly-β-hydroxybutyrate in a methane-utilizing mixed culture", J. Appl. Microbiol., 105(4), 1054-1061. https://doi.org/10.1111/j.1365-2672.2008.03831.x
- Nguyen, A.D., Hwang, I.Y., Lee, O.K., Kim, D., Kalyuzhnaya, M.G., Mariyana, R., Hadiyati, S., Kim, M.S., and Lee, E.Y., 2018, "Systematic metabolic engineering of Methylomicrobium alcaliphilum 20Z for 2,3-butanediol production from methane", Metabolic Engineering, 47, 323-333. https://doi.org/10.1016/j.ymben.2018.04.010
- Nguyen, A.D., Hwang, I.Y., Lee, O.K., Hur, D.H., Jeon, Y.C., Hadiyati, S., Kim, M.S., Yoon, S.H., Jeong, H., and Lee, E.Y., 2018, "Functional analysis of Methylomonas sp. DH-1 genome as a promising biocatalyst for bioconversion of methane to valuable chemicals", Catalysts, 8(3), 117.
- Novick, R.P., 1987, "Plasmid incompatibility", Microbiol Rev., 51(4), 381-395. https://doi.org/10.1128/mr.51.4.381-395.1987
- Solar, G.D., Giraldo, R., Ruiz-Echevarria M.J., Espinosa, M., and Diaz-Orejas, R., 1998, "Replication and control of circular bacterial plasmids", MMBR, 62(2), 434-464. https://doi.org/10.1128/MMBR.62.2.434-464.1998
- Chattoraj, D.K., 2000, "Control of plasmid DNA replication by iterons: no longer paradoxical", Mol Microbiol., 37(3), 467-476. https://doi.org/10.1046/j.1365-2958.2000.01986.x