DOI QR코드

DOI QR Code

Comparing Dynamic Control Ratio and Lower Extremity Muscle Activity during Eccentric Hamstring Exercises

  • Dae-Woo Jeong (Department of Physical Therapy, Gyeongbuk Regional Rehabilitation Hospital) ;
  • Du-Jin Park (Department of Physical Therapy, College of Health Sciences, Catholic University of Pusan)
  • Received : 2023.09.11
  • Accepted : 2023.10.18
  • Published : 2023.12.31

Abstract

Purpose: This study aimed to suggest an effective exercise for treating anterior cruciate ligament (ACL) and hamstring injuries based on the dynamic control ratio (DCR) for the hamstring and quadriceps during eccentric hamstring exercises. Methods: Twenty-four healthy participants participated in this study. The participants performed three eccentric hamstring exercises, including the Nordic exercise, the supine leg curl, and single-leg deadlifts. During the eccentric hamstring exercises, the vastus medialis oblique (VMO), vastus lateralis (VL), biceps femoris (BF), and semitendinosus (ST) were measured using surface electromyography. Results: The DCR was significantly lower during the supine leg curl and single-leg deadlift than during the Nordic exercise (p < 0.05). The activity of the VMO and VL was significantly greater during the supine leg curl than during the Nordic exercise and the single-leg deadlift (p < 0.05). VL activity was significantly higher during the single-leg deadlift than during the Nordic exercise (p < 0.05). ST activity was significantly higher during the supine leg curl and Nordic exercise than during the single-leg deadlift (p < 0.05). BF activity was significantly higher during the supine leg curl than during the Nordic exercise and single-leg deadlift (p < 0.05). Finally, the BF showed significantly higher activity during the Nordic exercise compared to during the single-leg deadlift (p < 0.05). Conclusion: Based on the DCR ratio and quadriceps activity, the supine leg curl should be introduced early in rehabilitation for ACL injuries.

Keywords

Acknowledgement

This research was funded by the National Research Foundation of Korea (NRF) grant funded by Ministry of Science and ICT, grant number 2019R1F1A1063237.

References

  1. Aagaard P, Simonsen EB, Andersen JL, et al. Antagonist muscle coactivation during isokinetic knee extension. Scandinavian Journal of Medicine and Science in Sports. 2000;10(2):58-67.  https://doi.org/10.1034/j.1600-0838.2000.010002058.x
  2. Baron JE, Parker EA, Duchman KR, Westermann RW. Perioperative and Postoperative Factors Influence Quadriceps Atrophy and Strength After ACL Reconstruction: A Systematic Review. Orthopaedic Journal of Sports Medicine. 2020;8(6):2325967120930296. 
  3. Biscarini A, Benvenuti P, Botti FM, et al. Voluntary enhanced cocontraction of hamstring muscles during open kinetic chain leg extension exercise: its potential unloading effect on the anterior cruciate ligament. American Journal of Sports Medicine. 2014;42(9): 2103-12.  https://doi.org/10.1177/0363546514536137
  4. Bregenhof B, Jorgensen U, Aagaard P, et al. The effect of targeted exercise on knee-muscle function in patients with persistent hamstring deficiency following ACL reconstruction - study protocol for a randomized controlled trial. Trials. 2018;19(1):1-13.  https://doi.org/10.1186/s13063-018-2448-3
  5. Chan KM, Maffulli N, Korkia P. Principles and practice of isokinetics in sports medicine and rehabilitation. First ed. Hong Kong. Lippincott Williams and Wilkins. 1996. 
  6. Charles D, White R, Reyes C, et al. A systematic review of the effects of blood flow restriction training on quadriceps muscle atrophy and circumference post ACL reconstruction. International Journal of Sports Physical Therapy. 2020;15(6):882-891.  https://doi.org/10.26603/ijspt20200882
  7. Cheung RT, Smith AW, Wong DP. H:q ratios and bilateral leg strength in college field and court sports players. Journal of Human Kinetics. 2012;33(1):63-71.  https://doi.org/10.2478/v10078-012-0045-1
  8. Cometti G, Maffiuletti NA, Pousson M, et al. Isokinetic strength and anaerobic power of elite, subelite and amateur French soccer players. International Journal of Sports Medicine. 2001;22(1):45-51.  https://doi.org/10.1055/s-2001-11331
  9. Coombs R, Garbutt G. Developments in the use of the hamstring/quadriceps ratio for the assessment of muscle balance. Journal of Sports Science and Medicine. 2002;1(3):56-62. 
  10. Croisier JL, Ganteaume S, Binet J, et al. Strength imbalances and prevention of hamstring injury in professional soccer player: A prospective study. American Journal of Sports Medicine. 2008;36(8):1469-1475.  https://doi.org/10.1177/0363546508316764
  11. De Ste Croix M, ElNagar YO, Iga J, et al. The impact of joint angle and movement velocity on sex differences in the functional hamstring/quadriceps ratio. Knee. 2017;4(4):745-750.  https://doi.org/10.1016/j.knee.2017.03.012
  12. De Ste Croix M, Priestley A, Lloyd R, et al. Age-related differences in functional hamstring/quadriceps ratio following soccer exercise in female youth players: An injury risk factor. Pediatric Exercise Science. 2018;30(3):376-382.  https://doi.org/10.1123/pes.2017-0034
  13. Dedinsky R, Baker L, Imbus S, et al. Exercise that facilitate optimal hamstring and quadriceps co-activation to help decrease ACL injury risk in healthy females: a systematic review of the literature. International Journal of Sports Physical Therapy. 2017;12(1):3-15. 
  14. Deighan MA, Serpell BG, Bitcon MJ, et al. Knee joint strength ratios and effects of hip position in Rugby players. Journal of Strength and Conditioning Research. 2012;26(7):1959-1966.  https://doi.org/10.1519/JSC.0b013e318234eb46
  15. Forbes H, Sutcliffe S, Lovell A, et al. Isokinetic thigh muscle ratios in youth football: Effects of age and dominance. International Journal of Sports Medicine. 2009;30(8): 602-606.  https://doi.org/10.1055/s-0029-1202337
  16. Garrett WE Jr. Muscle strain injuries: clinical and basic aspects. Medicine and Science in Sports and Exercise. 1990;22(4):436-443.  https://doi.org/10.1249/00005768-199008000-00003
  17. Hermens HJ, Freriks B, Disselhorst-Klug C, et al. Development of recommendations for SEMG sensors and sensor placement procedures. Journal of Electromyography and Kinesiology. 2000;10(5):361-374.  https://doi.org/10.1016/S1050-6411(00)00027-4
  18. Hwang YI, Moon SJ, Park DJ. Electromyographic analysis of quadriceps and hamstrings con-activation during hamstring strengthening exercises. PNF and Movement. 2019;17(3):441-450. 
  19. Letafatkar A, Rajabi R, Minoonejad H, et al. Efficacy of perturbation-enhanced neuromuscular training on hamstring and quadriceps onset time, activation and knee flexion during a tuck-jumping task. International Journal of Sports Physical Therapy. 2019;14(2): 214-227.  https://doi.org/10.26603/ijspt20190214
  20. Liebenson C. The functional training handbook. First ed. California. Lippincott Williams and Wilkins. 2014. 
  21. Maniar N, Cole MH, Bryant AL, et al. Muscle force contributions to anterior cruciate ligament loading. Sports Medicine. 2022;52(8):1737-1750.  https://doi.org/10.1007/s40279-022-01674-3
  22. Nimphius S, McBride JM, Rice PE, et al. Comparison of quadriceps and hamstring muscle activity during an isometric squat between strength-matched men and women. Journal of Sports Science and Medicine. 2019;18(1):101-108. 
  23. Park SY, Kim SH, Park DJ. Effect of slope angle on muscle activity during variations of the Nordic exercise. Journal of Exercise Rehabilitation. 2019;15(6): 832-838.  https://doi.org/10.12965/jer.1938670.335
  24. Ruas CV, Pinto MD, Brown LE, et al. The association between conventional and dynamic control knee strength ratios in elite soccer players. Isokinetic Exercise and Science. 2015;23(1):1-12.  https://doi.org/10.3233/IES-140557
  25. Rutherford DJ, Hubley-Kozey CL, Stanish WD. Maximal voluntary isometric contraction exercise: A methodological investigation in moderate knee osteoarthritis. Journal of Electromyography and 
  26. Kinesiology. 2011;21(1):154-160. Sherry MA, Best TM. A comparison of 2 rehabilitation program in the treatment of acute hamstring strains. Journal of Orthopaedic and Sports Physical Therapy. 2004;34(3):116-125.  https://doi.org/10.2519/jospt.2004.34.3.116
  27. Small K, McNaughton L, Greig M, et al. Effect of timing of eccentric hamstring strengthening exercises during soccer training: implications for muscle fatigability. Journal of Strength and Conditioning Research. 2009;23(4):1077-1083.  https://doi.org/10.1519/JSC.0b013e318194df5c
  28. Tan J, Balci N, Sepici V, et al. Isokinetic and isometric strength in osteoarthrosis of the knee. A comparative study with healthy women. American Journal of Physical Medicine and Rehabilitation. 1995;74(5):364-369.  https://doi.org/10.1097/00002060-199509000-00008
  29. Tsaklis P, Malliaropoulos N, Mendiguchia J, et al. Muscle and intensity based hamstring exercise classification in elite female track and field athletes: implications for exercise selection during rehabilitation. Open Access Journal of Sports Medicine. 2015;26(6): 209-217.  https://doi.org/10.2147/OAJSM.S79189
  30. van Dyk N, Behan FP, Whiteley R. Including the Nordic hamstring exercise in injury prevention programmes halves the rate of hamstring injuries: a systematic review and meta-analysis of 8459 athletes. British Journal of Sports Medicine. 2009;53(21):1362-1370.  https://doi.org/10.1136/bjsports-2018-100045
  31. Wright J, Ball N, Wood L. Fatigue, H/Q ratios and muscle coactivation in recreational football players. Isokinetic Exercise and Science. 2009;17(3):161-167. https://doi.org/10.3233/IES-2009-0348