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Effects-Based Operations (EBO) refers to a process for achieving strategic goals by focusing on effects rather than attrition-based 
destruction. For a successful implementation of EBO, identifying key nodes in an adversary network is crucial in the process 
of EBO. In this study, we suggest a network-based approach that combines network centrality and optimization to select the 
most influential nodes. First, we analyze the adversary’s network structure to identify the node influence using degree and between-
ness centrality. Degree centrality refers to the extent of direct links of a node to other nodes, and betweenness centrality refers 
to the extent to which a node lies between the paths connecting other nodes of a network together. Based on the centrality 
results, we then suggest an optimization model in which we minimize the sum of the main effects of the adversary by identifying 
the most influential nodes under the dynamic nature of the adversary network structure. Our results show that key node identification 
based on our optimization model outperforms simple centrality-based node identification in terms of decreasing the entire network 
value. We expect that these results can provide insight not only to military field for selecting key targets, but also to other 
multidisciplinary areas in identifying key nodes when they are interacting to each other in a network.

Keywords： Target Selection Problem, Effects-based Operations (EBO), Network Centrality, Network Optimization, Integer 
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1. Introduction1)

EBO (effects-based operation) refers to a process for achiev-
ing strategic goals by focusing on effects rather than attri-
tion-based destruction [17]. Desired effects in EBO can be 
accomplished through precise attacks on key targets of adver-
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sary systems with minimum risk and destruction.
While some studies have made a great deal of progress 

in defining and developing the concept of EBO [4, 20], sig-
nificant gaps still exist in our understanding of EBO. First, 
previous studies have focused on developing the procedures 
of and identifying the preconditions for implementing EBO. 
Although these conceptual works contribute to our knowledge 
of factors that may underlie EBO, more research attention 
is needed toward analyzing an adversary’s (enemy’s) complex 
network. Because the strategic elements of the adversary are 
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linked to each other, analyzing the adversary's network struc-
ture is important for both maximizing desired effects and 
minimizing possible costs of war. Second, several studies 
have attempted to analyze the adversary’s network structure, 
but have failed to consider various types of network 
characteristics. They have mainly used degree centrality which 
implies the extent to which a node is connected to other 
nodes [16, 23]. However, there are other types of network 
centrality. Different types of network centrality provide differ-
ent bases for assessing the relative importance of nodes [13]. 
Finally, previous research has paid little attention to the dynam-
ic nature of network structures. The adversary’s network struc-
ture may change if some nodes of the network are attacked, 
because nodes within the adversary’s network are lined to 
each other. Some researchers have attempted to select key 
targets based on the network centrality analysis, but these 
efforts have not yet been jointly examined the dynamic nature 
of network structures.

The primary purpose of this study is to identify key nodes 
in an adversary network for implementing EBO successfully. 
In the previous studies, the methods identifying key nodes 
have mostly relied on the analysis of network centrality, not 
taking into account the dynamic nature of network structures. 
The main contribution of our study is to consider identifying 
key nodes by adopting an optimization model to capture node 
value changes if some of the nodes are removed from a network 
(i.e., to capture the dynamic nature of a network structure), 
in addition to network centrality analysis. We combine network 
centrality and the optimization model to identify the most 
influential nodes. To discuss this in more detail, we first employ 
the two types of network centrality, degree and betweenness 
centrality, in order to analyze the adversary’s network 
structure. Then, we use these centrality results as the influence 
values of the nodes, and propose an optimization model, for-
mulated as a linear integer program, to find the most influential 
nodes. It turns out that key node identification based on our 
optimization model outperforms simple centrality-based node 
identification in terms of decreasing the entire adversary's 
network value.

This paper is organized as follows. In Section 2, we provide 
the literature review related to the concept of EBO and key 
node identification methods. After describing the dataset, we 
analyze two types of network centralities and compare the 
results of each network analysis in Section 3. Section 4 provides 
a linear integer programming formulation for optimal target 
selection in EBO. We conclude our study in Section 5.

2. Literature Review

2.1 Conceptual development for target 

selection in EBO

Recent development of technology has led to more effective 
and efficient implementation of EBO by providing nearly 
omniscient intelligence systems and smart weapons enabling 
pinpoint destruction. In general, the process of EBO includes 
three phases: planning, execution, and assessment [21]. In 
the planning phase, the most important objective is to define 
desired effects. To do this, it is necessary to analyze a PMESII 
(political, military, economic, social, infrastructure, in-
formation) system of an adversary (see <Figure 1>). Because 
nodes which constitute a PMESII system are linked to each 
other, by analyzing their connectiveness and network structure, 
it is possible to identify key nodes. Based on the results of 
network analyses, actions on key nodes for achieving desired 
effects are taken by the instruments of national power such 
as diplomacy, information, military, and economy in the ex-
ecution phase. After actions on key targets of adversary, it 
is necessary to conduct a battle damage assessment. In this 
assessment phase, the focus of assessment should be on the 
desired effects.

<Figure 1> Enemy Systems of Systems [7] 

As discussed above, identifying the most influential nodes 
should be an overriding concern in the process of EBO. Most 
studies [19, 24] have regarded degree centrality as a proxy 
for influence values of nodes assuming that key targets are 
those linked to a greater number of other nodes. However, 
only using degree centrality in selecting key nodes may not 
be sufficient to provide information for decision making, and 
may even be problematic. For example, according to the result 
of degree centrality analysis, in Figure 2, node C and node 
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Reference Method Summary

Albert et al. [1] Degree centrality direct links of a node to other nodes

Sabidussi [15] Betweenness centrality a node that lies between the paths connecting other nodes

Isaiah et al. [6] Closeness centrality relative distance between all node pairs

Negre et al. [14] Eigenvector centrality a node that has connections to high-scoring nodes

Sullivan [18] PageRank an algorithm used by Google Search to rank web pages
(a variant of the eigenvector centrality)

Katz [8] Katz centrality the number of all nodes that can be connected through a path (a variant of the eigenvector centrality)

Kitsak et al. [9] K-shell decomposition prune all nodes that has less than k direct links

Yang and An [25] DSHC DSHC (degree and structural hole count) identifies a node that has a larger degree and greater number 
of structural holes in a network.

Lai and Zhang [12] DKSN DKSN (degree k-shell and neighborhood) is a combination of k-shell and neighbor node degree.

Lai and Zhang [12] KSD KSD (the weighted k-shell degree neighborhood) combines degree, the neighbor node degree, and k-shell 
with adjustable weights associated with them.

Wang et al. [22] ALSI ALSI (aggregating local structure information) aggregates degree centrality, k-shell, and neighboring nodes. 

<Table 1> A Review of the Key Node Identification from the Literature

D can be selected as key targets because they have the most 
number of links. Despite not having a central position, how-
ever, node A could play an important role in the network 
by connecting node C and node D. This bridging benefit 
can be estimated by betweenness centrality analysis rather 
than degree centrality analysis. Accordingly, we propose both 
degree centrality and betweenness centrality to identify influ-
ential nodes in an adversary network. 

We argue that there are optimal priorities of the nodes 
that maximize desired effects in EBO. However, the node 
priorities simply obtained from centrality analyses is in-
sufficient to select key targets, because nodes in an adversary 
network interact with each other through their links. A certain 
node’s destruction make that node vanished from the network, 
and the influence values of the remaining nodes will change 
in the resilient network. Thus, it is important to consider 
the dynamic nature of network structures resulting from attacks 
on some nodes.

<Figure 2> Enemy Network Example 

2.2 Key Node Identification in a Network

 Many relationships in the real world can be represented 
in the form of networks; social networks, logistics networks, 
transportation networks, power grids, economic networks, bio-
logical networks, etc. Due to the interconnections and inter-
relationships of the nodes in a network, node importance recog-
nition is of special importance in terms of the network's robust-
ness, survivability, and sustainability. In recent years, many 
influential node identification algorithms for complex net-
works have been proposed, but most of the studies rely on 
analyzing topological structures of networks; degree centrality 
[1], betweenness centrality [15], closeness centrality [6], ei-
genvector centrality [14], PageRank [18], Katz centrality [8], 
and k-shell decomposition method [9]. Although these methods 
are relatively simple to identify key nodes in a network, they 
all concentrate on the connectivity of a node in a network 
and so they do not guarantee always to provide us with key 
nodes globally and dynamically. To overcome such drawback, 
some researchers have suggested the aggregation or combina-
tion of some of these centrality methods; DSHC [25], DKSN 
and KSD [12], and ALSI [22]. <Table 1> summarizes the 
methods mentioned above to identify key nodes in networks 
from the literature.

In this study, we use both centrality analysis and opti-
mization model. After analyzing network centrality to find 
the most influential nodes in a network, we then use these 
as input data in our optimization model. By capturing the 
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1 2 3 4 5 6 7 8 9 10 11 12

1 0 0.2517 0.0465 0.3372 0.1869 0.7766 0.0853 0.2070 0.8321 0.8321 0.1026 0.0220
2 0.1392 0 0 0.4065 0.2189 0.0092 0.4483 0.0103 0.8276 0.8210 0.3735 0.0355
3 0.1175 0.0547 0 0 0 0.1956 0.1168 0.0485 0.0064 0 0 0
4 0 0.0003 0.0107 0 0.0659 0 0 0 0 0.1346 0 0
5 0 0 0 0.0064 0 0 0 0 0 0 0 0
6 0.0037 0 0.0037 0 0 0 0.7072 0.1528 0.0119 0.0057 0.4480 0
7 0.0004 0.0659 0.0011 0 0 0.5445 0 0.0034 0.1391 0.0733 0.1577 0
8 0 0 0 0 0 0.0614 0.1414 0 0.0024 0 0.0570 0
9 0 0.0725 0 0 0 0.0003 0.1491 0 0 0.0296 0.0414 0.0181

10 0 0.0048 0.0179 0 0 0 0.0519 0 0.2706 0 0.0630 0.0945
11 0 0 0 0 0 0 0.0623 0 0 0.0017 0 0
12 0 0 0 0 0 0 0 0 0 0 0 0

<Table 2> Link Weights () of the Network Represented by Node-node Adjacency Matrix [24]

dynamic nature of the network structure, the suggested opti-
mization model provides the different key nodes from the 
simple centrality-based key nodes with higher effects. 

3. Analyzing Network Centrality

3.1 Data

In this study, we use the EBO network data of Yaman 
and Polat [24] to identify key nodes as targets. They construct 
an EBO network for the operation of NATO (the North Atlantic 
Treaty Organization) to stabilize a country, and they measure 
the influence values of nodes in this EBO network via a 
fuzzy cognitive map (FCM) approach. An FCM is a method-
ology used to model complex systems under the idea of fuzzy 
logic and neural networks [3]. As shown in <Figure 3>, the 
structure of the network consists of three layers. The high-
est-level layer represents a strategic objective. Nodes in the 
second-level layer are three main effects (A, B, and C) to 
support the strategic objective. In the bottom-level layer, there 
are 12 nodes. These nodes play a crucial role in achieving 
the strategic objective successfully by utilizing the three main 
effects. Each node in the bottom-level layer not only contrib-
utes to one of the three main effects, but is connected to 
other bottom-level nodes. This yields that destroying a node 
in the bottom level can change the main effects as well as 
influence values of nodes of some other nodes, which may 
cause an overall network structure change, the so-called 
“dynamic nature of the network structure.” Meanwhile, the 
strategic objective and main effects are non-existent nodes, 

and thus, we can only target the bottom-level nodes in this 
network. Yaman and Polat [24] also identify the weights of 
links in the network as in <Table 2?, and we use these to 
analyze network centrality. Here, link weight indicates the 
proportion with which the influence value of a node affects 
its neighbouring nodes. If a link weight is not zero, then 
there exists a link connecting these two nodes with the corre-
sponding weight. For example, node 1 is linked to node 2 
with the weight of 0.2517, while node 2 is linked to node 
1 with the weight of 0.1392. The weight will play out for 
delivering one node’s influence value to its neighbouring nodes 
by the amount of the connecting link weight (proportion). 
The way on how to transmit the influence values will be 
discussed later.

Yaman and Polat [24] provide a good causal network struc-
ture related to EBO, and their approach for obtaining node 
values and link weights through FCM should be of special 
interest. Our study basically employs their network structure 
and dataset. However, we perform additional analyses through 
several centrality concepts, and further, select the targets that 
maximize desired effects using an optimization model.

<Figure 3> An EBO Network for the Operation of NATO [24] 
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3.2 Measure

 Degree centrality captures the number of links a focal 
node in a network. In order to compare the results of degree 
centrality analysis and betweenness centrality analysis, we 
normalize degree centrality by dividing degree centrality scores 
by the maximum possible degree. According to data repre-
sentation, a network can be classified into binary or valued 
network. A link weight in a binary network only takes 0 
or 1, depending on whether the link exists. On the other 
hand, a valued network can take continuous link weights to 
represent the degree of link. In the case of valued networks, 
degree centrality depends on the group size and maximum 
link strength as well as the number of links [16, 23]. Thus, 
degree centrality (DC) of node i is calculated according to 
the following formula:

 
  



 × 


× 

where  is the weight of the link between node  and , 
  is a maximum link value,  is a network size (the 
total number of nodes), and the possible maximum network 
centrality is 100. For example, from Table 2, the out-degree 
centrality of node 1 is 40.21 [3.68÷(0.8321×11)].

Betweenness centrality captures the sum of the fraction 
of shortest paths between two nodes that pass through a focal 
node. As with degree centrality, we normalize betweenness 
centrality by dividing betweenness centrality scores by the 
maximum possible betweenness. Of the several measures of 
betweenness centrality, we take flow betweenness centrality 
because our network data comprise valued types of links [5]. 
Flow betweenness centrality (FBC) is calculated as follows:

  
  



×  ≠,

where  is the amount of flow between node j and k, and 
  is the portion of this flow mediated by the node i 
(see [5] for more detailed discussion and formula). We compute 
betweenness centrality using Ucinet program [2].

For non-symmetric network data, the in-directed link is 
the link received by a focal node and the out-directed link 
is the link initiated by a focal node. Because network data 
in this study is non-symmetric, we analyze an in-directed 
network and an out-directed network separately, and then 

aggregate them. 

3.3 Results

<Table 3> presents the results of the network centrality 
analyses. According to the result of the degree centrality analy-
sis, node 1 is the most influential node, followed by node 
2, 6, 7, 9, 10, 11, 4, 8, 3, 5, and 12. However, in the result 
of the betweenness centrality analysis, node 2 is the most 
influential node, followed by node 7, 4, 1, 10, 6, 3, 9, 8, 
11, 5, and 12. Specifically, node 1 is the highest ranked node 
in the degree centrality analysis, but ranked lower than node 
2 in the betweenness centrality analysis. These different results 
indicate that only using one type of network centrality is 
insufficient and that different network centrality analyses 
should be used to identify influential nodes in EBO.

<Table 3> Results of Network Centrality Analysis

 Node
Degree

centrality
Betweenness

centrality
Aggregated
centrality

1 21.53 11.90 33.43
2 20.43 16.16 36.59
3 3.38 8.12 11.50
4 5.25 12.33 17.58
5 2.61 2.36 4.97
6 15.95 9.77 25.73
7 15.01 14.62 29.63
8 3.74 4.10 7.83
9 13.12 7.44 20.55

10 13.12 10.96 24.07
11 7.14 3.16 10.31
12 0.93 0.86 1.79

4. Optimizing Target Selection

In order to identify key nodes, we may simply give ranks 
to nodes according to centrality analysis results. However, 
these do not consider the dynamic nature of the interactions 
of the nodes in a network. In fact, the change of a single 
node influence value also affect other node’s influence values. 
For instance, node 2, 7, and 4 based on the betweenness 
centrality results are not necessarily the best three targets, 
because destroying the highest betweenness centrality nodes 
does not always guarantee the most desired effects. 

In this section, we discuss how to reflect such changes 
in a network structure after taking centrality results as the 
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influence values. Adapting the FCM of Yaman and Polat 
[24], we provide a formulation in which an influence value 
of a node is recomputed. Moreover, as a final stage of our 
decision-making, we select the most influential targets (nodes) 
in an adversary network to make their combat ability incapable 
or at least degraded. Under the situation that our available 
attack resource is limited, we consider which nodes with higher 
priorities to be selected as targets, based on solving the opti-
mization model formulated as a linear integer program.

4.1 Node Influence Values 

Let   be the initial influence value of node . An initial 
value is taken from one of the centrality results. As seen 
in <Table 3>, there are three types of initial influence values: 
degree centrality, betweenness centrality, and their aggregated 
centrality. We independently use each as our initial value, 
in turn. Now, we introduce our decision variables as follows:

           
 

Furthermore, when node  is selected as a target assuming 
that it is damaged with a certain percentage, an influence 
value of node  is decreased by that percentage. This also 
affects the nodes to which it is connected. Therefore, attack 
of a single node causes chain effect to not only its neighboring 
nodes but overall nodes in a network. Consequently, this re-
duces the main effects of an adversary and then makes the 
strategic objective unsuccessful.

Let   be the percentage of damage to node  (where 
 ≤  ≤ , for all ) if it is attacked. Then, if node  is 
attacked, its remaining influence value becomes   . 
For example, if one node has its initial influence value of 
10 with 80% damage of its value when attacked, its “post-val-
ue” becomes ×   . For simplicity, we set damage 
percentage to be identical to all nodes, e.g.,    for all 
. Now, we involve our decision variable to this form. Due 
to its characteristic that it takes 0 or 1,     leads 
to an appropriate influence value for node . Thus, when 
  , the corresponding node value becomes   . 
Otherwise, it maintains its initial value  .

To take into account interactions between nodes, we employ 
the notion of an FCM approach [10]. The main idea is that 
a certain node’s influence value can be calculated via the 
sum of all incoming node with the proportion of the corre-

sponding link’s weight. In a general form, this can be expressed 
as Equation (1):

  
  



 , (1)

where function  can vary depending on the problems, but 
usually sets to be bivalent, trivalent, logistic, or sigmoid [24]. 
As a variant, Yaman and Polat [24] propose Equation (2) 
by involving its own value into calculation:


   

 


  



, (2)

This implies that initial value of itself plus incoming node 
values with the corresponding link’s weight can create a new 
value of the node. Note that in their approach all node values 
range from 0 to 1, and the sum of incoming node values 
are only reflected by the amount of complementary value 
of itself 

  in order to ensure the resulting value is 
still in [0, 1]. Prior to this approach, Koulouriotis et al. [11] 
suggest a simpler version of node influence evaluation as 
Equation (3):


   

 
  




, (3)

in which incoming node values are no more rescaled by 


  and thus, the new influence value can be obtained 
by adding incoming node values with weights to its own 
initial value. Based on these approaches, we employ Formula 
(4) as our influence value evaluation:

 
  



. (4)

Now, we involve our decision variables on whether to attack 
node  or not. Then, the final value of node  becomes Equation 
(5):

    
  



 (5)

We define this as  , whose value depends on decision 
vector   ⋯  and accordingly depends on its neigh-
bors’ damages. Let  be the set of all nodes, and  and 
 be an element of set , i.e., ∈. In addition, we define 
  as the subset of  whose elements are the incoming nodes 
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to . Using these sets and indices, Equation (5) can be rewritten 
as Equation (6):

    
∈



 . (6)

4.2 Optimization Models for Selecting Nodes

We now select key nodes in a way that combines network 
centrality analyses and network optimization. As in our EBO 
network, there is a single highest-level node representing a 
strategic objective that an adversary pursues. To achieve the 
strategic objective, there are three main effects on the second 
highest-level. We denote these effects by node A, B, and 
C. Since these three nodes are also affected by 12 lowest-level 
nodes, their post-values can be expressed as  ,   
and  , respectively. As an attacker, we wish to minimize 
their effects by targeting some of the lowest-level nodes. This 
yields the following objective function:

Minimize   

In our EBO network, node A is influenced by node 1 
through 5, node B by node 6 through 8, and node C by 
the others. Taking this into account,

 
  



  ,

 
  



  ,

 
  



  ,

where   is a contribution rate of node . Contribution rates 
from each node to effect are provided by Yaman & Polat 
[24] as in <Table 4>.

node A node  B node  C

1 0.90 6 0.50 9 0.95

2 0.80 7 0.65 10 0.70

3 0.80 8 0.75 11 0.15

4 0.35 12 0.15

5 0.30       

<Table 4> Contribution Rate () from the Lowest-level 

Nodes to Effects A, B, and C

Now, we consider the situation under which we are not 
able to attack all of adversary’s nodes, due to resource avail-
ability (e.g., guns or missile). So the following cardinality 
constraint is added to the model: 


  



 ≤ ,

where  is a constant we can set. The underlying assumptions 
of this constraint are 1) there is a single type of means of 
attack, and 2) it is not allowed to attack multiple times for 
a single target. We provide a final version of our optimization 
model (7) formulated as an integer program in the following:

   
  



                (7a)

s.t.

     
∈



 ∀ (7b)

 
  



 ≤  (7c)

 ∈, ∀ (7d)

In sum, Equation (7a) minimizes the sum of main effects 
of the adversary, Constraint (7b) refers to the influence value 
evaluation for each node in a recursive way by considering 
all other nodes, and Constraints (7c)–(7d) clarify dis-
allowance of attacking more than availability and multiple 
time attacks under a single type of means. 

4.3 Computational Results 

We show the performance of our optimization model 
through computational experiments, using the EBO network 
as in <Figure 1> with the link weights () in Table 3. 
Our optimization model (7) requires several experimental 
settings. First, an initial influence value of node ,  , is 
adopted from degree centrality and betweenness centrality 
obtained in Section 3. We set up three different values for 
 : 1) degree centrality, 2) betweenness centrality, and 3) 
aggregate centrality (degree centrality plus betweenness cen-
trality), so that we can compare the node priorities and effects 
with the ones determined via optimization model. Finally, 
damage percentage () is set to be 0.8 for all nodes identically. 
In Constraint (7c), we use the value of  from 1 to 12, in 
turn. This enables to see the node priorities (or, rankings) 



Jinho Lee․Kihyun Lee60

Degree-based Betweenness-based Aggregate-based

Selected
node

Remaining
value

Selected
node

Remaining
value

Selected
node

Remaining
value

Prio-rity  Opt.  Cen.  Opt.  Cen.  Opt.  Cen.  Opt.  Cen.  Opt.  Cen.  Opt. Cen.
1st 1 1 149.4 149.4 2 2 117.4 117.4 1 2 272.3 277.0
2nd 2 2 103.6 103.6 1 7 85.9 103.5 2 1 188.6 188.6
3rd 6 6 87.9 87.9 7 4 72.1 98.8 7 7 160.5 160.5
4th 7 7 73.6 73.6 6 1 63.0 67.4 6 6 136.6 136.6
5th 9 9 61.7 61.7 10 10 53.9 58.3 10 10 116.7 116.7
6th 10 10 50.9 50.9 3 6 46.3 49.2 9 9 98.0 98.0
7th 3 11 47.7 49.8 9 3 39.6 41.7 3 4 87.3 91.4
8th 8 4 45.1 47.8 4 9 34.9 34.9 4 3 80.7 80.7
9th 4 8 43.1 45.2 8 8 32.0 32.0 8 11 75.1 79.1

10th 11 3 42.0 42.0 5 11 31.5 31.5 11 8 73.6 73.6
11th 5 5 41.4 41.4 11 5 31.0 31.0 5 5 72.3 72.3
12th 12 12 41.3 41.3 12 12 30.9 30.9 12 12 72.1 72.1

<Table 5> Optimal Priorities of Nodes Compared to Centrality Measures. Here, Opt. Indicates Optimal Priorities and 

Cen. Indicates Centrality-based Priorities

<Figure 4> Remaining Values of the Adversary Network as the Number of Nodes Selected as Targets Grows Large:

(a) Under degree centrality based value (left). (b) Under betweenness centrality based value (right). Here, 

Opt. indicates optimal priorities and Cen. indicates centrality-based priorities.

to minimize the adversary’s effects. Moreover, an optimal 
objective value after solving the optimization model gives 
the adversary’s remaining effects, and thus, it is possible to 
compare the effect decreases and marginal decrease value 
under the two different node selection approaches: 
Centrality-based node selection and optimal target selection. 
The former simply selects the nodes with high centrality and 
the latter optimally selects nodes in a way that minimizes 
the effects.

We show the resulting node priorities by solving the opti-

mization model and compare these with the simple central-
ity-based priorities in <Table 5>.

These results imply that depending on the notion of central-
ity considered, selected targets can vary. In particular, degree 
centrality and betweenness centrality provide more dis-
tinguishable results. If the goal is to decrease or degrade 
the influence value, then degree centrality based results would 
be more appropriate selection. However, the goal to disconnect 
the nodes may make one choose betweenness centrality based 
priorities.
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In addition, under a certain centrality, optimal node priorities 
can be achieved by solving the optimization model, and this 
definitely outperforms simple centrality-based rankings in 
terms of decreasing the entire network value. Figure 4 shows 
the remaining values as the number of targets grows large. 
If the influence value is based on degree centrality, the solution 
qualities are not so remarkable although we achieve optimality 
for the best target selection. However, when focusing on a 
betweenness centrality-based influence value, an optimal target 
selection provides a relatively promising result. This can be 
interpreted: If betweenness centrality is the measure for evalu-
ating the influence values of nodes, the network structure 
and their interdependency seem to be more dynamic, i.e., 
one node’s effect change or its removal from the network 
can highly affect other nodes, leading to drastic change of 
priorities. Moreover, in such a dynamic nature, selecting the 
most influential nodes via an optimization model rather than 
centrality analysis can always assure the best response in 
supporting decision making. 

5. Conclusion

In this study, we have discussed a network-based approach 
for effective target selection. First, an EBO network was ana-
lyzed using degree centrality and betweenness centrality in 
order to see which nodes are more likely to be influential, 
since network centrality is considered as a proxy for evaluating 
the influence value of nodes. Second, considering the initial 
influence node values obtained from centrality analysis, we 
present an optimization model taking into account the dynamic 
nature of the network structure. 

Through our computational results, different types of net-
work centrality enable us to view the same network from 
different angles. While degree centrality prioritizes nodes with 
higher direct connections, betweenness centrality gives nodes 
with higher indirect connections (i.e., high bridging role) high 
ranks. And, the results show that under betweenness centrality, 
nodes are ranked quite differently from the ones of degree 
centrality. Moreover, our optimization model can capture the 
dynamic nature of network structure by taking the so-called 
post value into consideration. Target selection via our opti-
mization model clearly outperforms the selection from simple 
centrality-based target selection regarding the entire network 
value decrease. 

Despite the results of this study, several limitations should 

be addressed for future research. First, we adopted the test 
network data from one of the early studies of EBO. In the 
future research, more generalized network structures and sizes 
should be considered. Furthermore, the optimization model 
that we present is also customized for solving the problem 
of the used test network. In the future, more generalized opti-
mization models are needed to solve various types of networks. 
Next, one may think that on the adversary's perspective, they 
may assess our EBO network to select our infrastructures 
as their targets. For our defense strategy or tactics, game 
theoretic approach could be an option that deals with such 
a problem. Finally, we used deterministic input parameters 
(i.e., all input data are given in advance), which may not 
be that realistic. Assuming one or more of these to be stochastic 
(or, probabilistic) would yield more advanced, practical 
models. We leave such considerations for future research.

Our approach makes no claims about comprehensiveness. 
That said, what we suggest here is a new perspective on 
a topic of enduring interest in EBO. We expect that these 
results can provide insight not only to military field for choos-
ing key targets, but also to other multidisciplinary areas in 
identifying key nodes when they are interacting to each other 
in a network.
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