DOI QR코드

DOI QR Code

Copper Tolerance of Novel Rhodotorula sp. Yeast Isolated from Gold Mining Ore in Gia Lai, Vietnam

  • Kim Cuc Thi Nguyen (Institute of Biotechnology, Hue University) ;
  • Phuc Hung Truong (Faculty of Biotechnology, TNU- University of Sciences) ;
  • Cuong Tu Ho (Institute of Environmental Technology, Vietnam Academy of Science and Technology) ;
  • Cong Tuan Le (Department of Environmental Science, University of Sciences, Hue University) ;
  • Khoa Dang Tran (Faculty of Agronomy, University of Agriculture and Forestry, Hue University) ;
  • Tien Long Nguyen (Department of Educational Management, University of Agriculture and Forestry, Hue University) ;
  • Manh Tuan Nguyen (Institute of Life Science, Thai Nguyen University of Agriculture and Forestry) ;
  • Phu Van Nguyen (Institute of Biotechnology, Hue University)
  • Received : 2023.01.18
  • Accepted : 2023.10.19
  • Published : 2023.12.31

Abstract

In this study, twenty-five yeast strains were isolated from soil samples collected in the gold mining ore in Gia Lai, Vietnam. Among them, one isolate named GL1T could highly tolerate Cu2+ up to 10 mM, and the isolates could also grow in a wide range of pH (3-7), and temperature (10-40 ℃). Dried biomass of GL1 was able to remove Cu2+ effectively up to 90.49% with a maximal biosorption capacity of 18.1 mg/g at pH 6, temperature 30 ℃, and incubation time 60 min. Sequence analysis of rDNA indicated this strain was closely related to Rhodotorula mucilaginosa but with 1.53 and 3.46% nucleotide differences in the D1/D2 domain of the 28S rRNA gene and the ITS1-5.8S rRNA gene-ITS2 region sequence, respectively. Based on phylogenetic tree analysis and the biochemical characteristics, the strain appears to be a novel Rhodotorula species, and the name Rhodotorula aurum sp. nov. is proposed. This study provides us with more information about heavy metal-tolerant yeasts and it may produce a new tool for environmental control and metal recovery operations.

Keywords

Acknowledgement

The authors thank Dr. Derek Wilkinson for the English editing and proofreading of the manuscript.

References

  1. Izydorczyk G, Mikula K, Skrzypczak D, et al. Potential environmental pollution from copper metallurgy and methods of management. Environ Res. 2021;197:111050. doi: 10.1016/j.envres.2021.111050.
  2. Burkhead JL, Gogolin Reynolds KA, Abdel-Ghany SE, et al. Copper homeostasis. New Phytol. 2009;182(4): 799-816. doi: 10.1111/j.1469-8137.2009.02846.x.
  3. Halliwell B. Oxidative stress and neurodegeneration: where are we now? J Neurochem. 2006;97(6): 1634-1658. doi: 10.1111/j.1471-4159.2006.03907.x.
  4. Strain J, Culotta VC. Copper ions and the regulation of Saccharomyces cerevisiae metallothionein genes under aerobic and anaerobic conditions. Mol Gen Genet. 1996;251(2):139-145. doi: 10.1007/BF02172911.
  5. Brewer GJ. The risks of copper toxicity contributing to cognitive decline in the aging population and to Alzheimer's disease. J Am Coll Nutr. 2009;28(3):238-242. doi: 10.1080/07315724.2009.10719777.
  6. Llanos RM, Mercer JFB. The molecular basis of copper homeostasis copper-related disorders. DNA Cell Biol. 2002;21(4):259-270. doi: 10.1089/104454902753759681.
  7. Abe F, Miura T, Nagahama T, et al. Isolation of a highly copper-tolerant yeast, Cryptococcus sp., from the Japan Trench and the induction of superoxide dismutase activity by Cu2+. Biotechnol Lett. 2001;23:2027-2034. https://doi.org/10.1023/A:1013739232093
  8. de Siloniz M-I, Balsalobre L, Alba C, et al. Feasibility of copper uptake by the yeast Pichia guilliermondii isolated from sewage sludge. Res Microbiol. 2002;153(3):173-180. doi: 10.1016/s0923-2508(02)01303-7.
  9. Eman MF, Fatma FA-M, Soad AE. Biosorption of heavy metals onto different eco-friendly substrates. J Toxicol Environ Heal Sci. 2017;9:35-44.
  10. Grujic S, Vasic S, Radojevic I, et al. Comparison of the Rhodotorula mucilaginosa biofilm and planktonic culture on heavy metal susceptibility and removal potential. Water, Air, Soil Pollut. 2017;228:73.
  11. Rehman A, Farooq H, Hasnain S. Biosorption of copper by yeast, Loddermyces elongisporus, isolated from industrial effluents: its potential use in wastewater treatment. J Basic Microbiol. 2008;48(3):195-201. doi: 10.1002/jobm.200700324.
  12. Kurtzman CP, Fell JW, Boekhout T, et al. Methods for isolation, phenotypic characterization and maintenance of yeasts. In: Kurtzman CP, Fell JW, Boekhout T, editors, The yeasts: A Taxonomic Study. Vol 1, 5th ed. Amsterdam (Netherlands): Elsevier. p. 87-110.
  13. Nguyen KCT, Nguyen PV, Truong HTH. Heavy metal tolerance of novel papiliotrema yeast isolated from Vietnamese mangosteen. Mycobiology. 2020; 48(4):296-303. doi: 10.1080/12298093.2020.1767020.
  14. Kurtzman CP, Robnett CJ. Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. Antonie Van Leeuwenhoek. 1998;73(4):331-371. doi: 10.1023/a:1001761008817.
  15. Tamura K, Stecher G, Kumar S. MEGA11: molecular evolutionary genetics analysis version 11. Mol Biol Evol. 2021;38(7):3022-3027. doi: 10.1093/molbev/msab120.
  16. Nguyen Van P, Thi Hong Truong H, Pham TA, et al. Removal of manganese and copper from aqueous solution by yeast Papiliotrema huenov. Mycobiology. 2021;49(5):507-520. doi: 10.1080/12298093.2021.1968624.
  17. Ruas FAD, Amorim SS, Le~ao VA, et al. Rhodotorula mucilaginosa isolated from the manganese mine water in Minas Gerais., Brazil: potential employment for bioremediation of contaminated water. Water Air Soil Pollut. 2020;231:1-14. https://doi.org/10.1007/s11270-019-4368-6
  18. Mundra S, Arora R, Stobdan T. Solubilization of insoluble inorganic phosphates by a novel temperature-, pH-, and salt-tolerant yeast, Rhodotorula sp. PS4, isolated from seabuckthorn rhizosphere, growing in cold desert of Ladakh, India. World J Microbiol Biotechnol. 2011;27(10):2387-2396. doi: 10.1007/s11274-011-0708-4.
  19. Shivaji S, Bhadra B, Rao RS, et al. Rhodotorula himalayensis sp. nov., a novel psychrophilic yeast isolated from roopkund lake of the Himalayan Mountain ranges, India. Extremophiles. 2008;12(3):375-381. doi: 10.1007/s00792-008-0144-z.
  20. Yalcin SK, Ozbas ZY. Effects of pH and temperature on growth and glycerol production kinetics of two indigenous wine strains of Saccharomyces cerevisiae from Turkey. Braz. J. Microbiol. 2008;39(2):325-332. doi: 10.1590/S1517-83822008000200024.
  21. Zhao Y, Guo L, Xia Y, et al. Isolation, identification of carotenoid-producing Rhodotorula sp. from marine environment and optimization for carotenoid production. Mar Drugs. 2019;17(3):161. doi: 10.3390/md17030161.
  22. Nasrabadi MRN, Razavi SH. Optimization of b-carotene production by a mutant of the lactose-positive yeast Rhodotorula acheniorum from whey ultrafiltrate. Food Sci Biotechnol. 2011;20(2):445-454. doi: 10.1007/s10068-011-0062-1.
  23. Latha BV, Jeevaratnam K, Murali HS, et al. Influence of growth factors on carotenoid pigmentation of Rhodotorula glutinis DFR-PDY from natural source. Indian J Biotechnol. 2005;4:353-357.
  24. Bankar A, Zinjarde S, Shinde M, et al. Heavy metal tolerance in marine strains of Yarrowia lipolytica. Extremophiles. 2018;22(4):617-628. doi: 10.1007/s00792-018-1022-y.
  25. Liu B, Wang C, Liu D, et al. Hg tolerance and bio-uptake of an isolated pigmentation yeast Rhodotorula mucilaginosa. PLOS One. 2017;12(3):e0172984. doi: 10.1371/journal.pone.0172984.
  26. Villegas LB, Amoroso MJ, de Figueroa LIC. Copper tolerant yeasts isolated from polluted area of Argentina. J Basic Microbiol. 2005;45(5):381-391. doi: 10.1002/jobm.200510569.
  27. Rajpert L, Sklodowska A, Matlakowska R. Biotransformation of copper from kupferschiefer black shale (Fore-Sudetic monocline, Poland) by yeast Rhodotorula mucilaginosa LM9. Chemosphere. 2013;91(9):1257-1265. doi: 10.1016/j.chemosphere.2013.02.022.
  28. Villegas LB, Amoroso MJ, de Figueroa LIC. Responses of Candida fukuyamaensis RCL-3 and Rhodotorula mucilaginosa RCL-11 to copper stress. J Basic Microbiol. 2009;49(4):395-403. doi: 10.1002/jobm.200800218.
  29. Febrianto J, Kosasih AN, Sunarso J, et al. Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent: a summary of recent studies. J Hazard Mater. 2009;162(2-3):616-645. doi: 10.1016/j.jhazmat.2008.06.042.
  30. Say R, Denizli A, Arica MY. Biosorption of cadmium (II), lead (II) and copper (II) with the filamentous fungus Phanerochaete chrysosporium. Bioresour Technol. 2001;76(1):67-70. doi: 10.1016/s0960-8524(00)00071-7.
  31. Chen X, Tian Z, Cheng H, et al. Adsorption process and mechanism of heavy metal ions by different components of cells, using yeast (Pichia pastoris) and Cu 2+ as biosorption models. RSC Adv. 2021; 11(28):17080-17091. doi: 10.1039/d0ra09744f.
  32. do Nascimento JM, de Oliveira JD, Rizzo ACL, et al. Biosorption Cu (II) by the yeast Saccharomyces cerevisiae. Biotechnol Rep. 2019;21:e00315. doi: 10.1016/j.btre.2019.e00315.
  33. Cojocaru C, Diaconu M, Cretescu I, et al. Biosorption of copper (II) ions from aqua solutions using dried yeast biomass. Colloids Surfaces A Physicochem Eng Asp. 2009;335(1-3):181-188. doi: 10.1016/j.colsurfa.2008.11.003.
  34. Al-Homaidan AA, Al-Houri HJ, Al-Hazzani AA, et al. Biosorption of copper ions from aqueous solutions by spirulina platensis biomass. Arab J Chem. 2014;7(1):57-62. doi: 10.1016/j.arabjc.2013.05.022.
  35. Uslu G, Tanyol M. Equilibrium and thermodynamic parameters of single and binary mixture biosorption of lead (II) and copper (II) ions onto Pseudomonas putida: effect of temperature. J Hazard Mater. 2006;135(1-3):87-93. doi: 10.1016/j.jhazmat.2005.11.029.
  36. Salvadori MR, Ando RA, Oller do Nascimento CA, et al. Intracellular biosynthesis and removal of copper nanoparticles by dead biomass of yeast isolated from the wastewater of a mine in the Brazilian Amazonia. PLOS One. 2014;9(1):e87968. doi: 10.1371/journal.pone.0087968.
  37. Luk CHJ, Yip J, Yuen CWM, et al. Biosorption performance of encapsulated Candida krusei for the removal of copper (II). Sci Rep. 2017;7(1):2159. doi: 10.1038/s41598-017-02350-7.
  38. Fadel M, Hassanein NM, Elshafei MM, et al. Biosorption of manganese from groundwater by biomass of Saccharomyces cerevisiae. Hbrc J. 2017;13(1):106-113. doi: 10.1016/j.hbrcj.2014.12.006.
  39. Yilmazer P, Saracoglu N. Bioaccumulation and biosorption of copper (II) and chromium (III) from aqueous solutions by Pichia stipitis yeast. J Chemical Tech Biotech. 2009;84(4):604-610. doi: 10.1002/jctb.2088.
  40. Ojima Y, Kosako S, Kihara M, et al. Recovering metals from aqueous solutions by biosorption onto phosphorylated dry baker's yeast. Sci Rep. 2019;9(1):225. doi: 10.1038/s41598-018-36306-2.
  41. Farhan SN, Khadom AA. Biosorption of heavy metals from aqueous solutions by Saccharomyces cerevisiae. Int J Ind Chem. 2015;6(2):119-130. doi: 10.1007/s40090-015-0038-8.