DOI QR코드

DOI QR Code

Additions to the Knowledge of the Fungal Order Eurotiales in Korea: Eight Undescribed Species

  • Thuong T. T. Nguyen (Department of Agricultural Biological Chemistry, College of Agriculture & Life Sciences, Environmental Microbiology Lab, Chonnam National University) ;
  • Ki Hyun Kang (Department of Agricultural Biological Chemistry, College of Agriculture & Life Sciences, Environmental Microbiology Lab, Chonnam National University) ;
  • Dong Hee Kim (Department of Agricultural Biological Chemistry, College of Agriculture & Life Sciences, Environmental Microbiology Lab, Chonnam National University) ;
  • Su Jin Kim (Department of Agricultural Biological Chemistry, College of Agriculture & Life Sciences, Environmental Microbiology Lab, Chonnam National University) ;
  • Hye Yeon Mun (Microbial Research Department, Fungal Research Team, Nakdonggang National Institute of Biological Resources) ;
  • Wonsu Cheon (Microbial Research Department, Fungal Research Team, Nakdonggang National Institute of Biological Resources) ;
  • Hyang Burm Lee (Department of Agricultural Biological Chemistry, College of Agriculture & Life Sciences, Environmental Microbiology Lab, Chonnam National University)
  • 투고 : 2023.11.01
  • 심사 : 2023.11.27
  • 발행 : 2023.12.31

초록

Eurotiales is a relatively large order of Ascomycetes, well-known for their ability to produce secondary metabolites with potential beneficial applications. To understand their diversity and distribution, different environmental sources including soil, freshwater, insect, and indoor air were investigated. Eight strains of Eurotiales were isolated and identified based on their morphological characters and a multi-gene phylogenetic analysis of the ITS, BenA, CaM, and RPB2 regions. We identified eight taxa that were previously not reported from Korea: Aspergillus baeticus, A. griseoaurantiacus, A. spinulosporus, Penicillium anthracinoglaciei, P. labradorum, P. nalgiovense, Talaromyces atroroseus, and T. georgiensis. Detailed descriptions, illustrations, and phylogenetic tree for the eight new records species are presented, and information regarding the records is also discussed.

키워드

과제정보

This work was supported by the Survey and Discovery of Indigenous Fungal Species of Korea Project (NIBR202203204) funded by the National Institute of Biological Resources (NIBR) of the Ministry of Environment (MOE) and by the Discovery of Fungi from Freshwater and their Collection for Fungaria Project (NNIBR202201206) funded by the Nakdonggang National Institute of Biological Resources (NNIBR) of the Ministry of Environment (Korea). This study was also supported by the Ministry of Science and ICT (Korea) (2022M3H9A1082984) and Chonnam National University [Grant Number 2020-2098]. This work was also partly supported by the Graduate Program for the Undiscovered Taxa of Korea and in part carried out with the support of Cooperative Research Program (RS-2023-00259880) for Agriculture Science and Technology Development, Rural Development Administration, Korea.

참고문헌

  1. Houbraken J, Kocsube S, Visagie CM, et al. Classification of Aspergillus, Penicillium, Talaromyces and related genera (Eurotiales): an overview of families, genera, subgenera, sections, series and species. Stud Mycol. 2020;95:5-169. doi: 10.1016/j.simyco.2020.05.002.
  2. Houbraken J, de Vries RP, Samson RA. Modern taxonomy of biotechnologically important Aspergillus and Penicillium species. Adv Appl Microbiol. 2014;86:199-249. doi: 10.1016/B978-0-12-800262-9.00004-4.
  3. Cairns TC, Nai C, Meyer V. How a fungus shapes biotechnology: 100 years of Aspergillus niger research. Fungal Biol Biotechnol. 2018;5(1):13. doi: 10.1186/s40694-018-0054-5.
  4. Sun P, Wang M, Wang S, et al. Effect of fermentation with Penicillium roqueforti and Penicillium nalgiovense on physicochemical properties and microstructure of duck meat products. J Light Technol. 2022;37(4):18-25.
  5. Mousavi B, Hedayati MT, Hedayati N, et al. Aspergillus species in indoor environments and their possible occupational and public health hazards. Curr Med Mycol. 2016;2(1):36-42. doi: 10.18869/acadpub.cmm.2.1.36.
  6. Seyedmousavi S, Guillot J, Arne P, et al. Aspergillus and aspergilloses in wild and domestic animals: a global health concern with parallels to human disease. Med Mycol. 2015;53(8):765-797. doi: 10.1093/mmy/myv067.
  7. Frisvad JC. Taxonomy, chemodiversity, and chemo-consistency of Aspergillus, Penicillium, and Talaromyces species. Front Microbiol. 2014;5:773. doi: 10.3389/fmicb.2014.00773.
  8. Yilmaz N, Visagie CM, Houbraken J, et al. Polyphasic taxonomy of the genus Talaromyces. Stud Mycol. 2014;78:175-341. doi: 10.1016/j.simyco.2014.08.001.
  9. Tsang CC, Tang JYM, Lau SKP, et al. Taxonomy and evolution of Aspergillus, Penicillium and Talaromyces in the omics era - past, present and future. Comput Struct Biotechnol J. 2018;16:197-210. doi: 10.1016/j.csbj.2018.05.003.
  10. Chavez R, Bull P, Eyzaguirre J. The xylanolytic enzyme system from the genus Penicillium. J Biotechnol. 2006;123(4):413-433. doi: 10.1016/j.jbiotec.2005.12.036.
  11. Meyer V, Wu B, Ram AF. Aspergillus as a multipurpose cell factory: current status and perspectives. Biotechnol Lett. 2011;33(3):469-476. doi: 10.1007/s10529-010-0473-8.
  12. De Vries RP, Riley R, Wiebenga A, et al. Comparative genomics reveals high biological diversity and specific adaptations in the industrially and medically important fungal genus Aspergillus. Genome Biol. 2017;18(1):28. doi: 10.1186/s13059-017-1151-0.
  13. Kumari M, Taritla S, Sharma A, et al. Antiproliferative and antioxidative bioactive compounds in extracts of marine-derived endophytic fungus Talaromyces purpureogenus. Front Microbiol. 2018;9:1777. doi: 10.3389/fmicb.2018.01777.
  14. Lei L-R, Gong L-Q, Jin M-Y, et al. Research advances in the structures and biological activities of secondary metabolites from Talaromyces. Front Microbiol. 2022;13:984801. doi: 10.3389/fmicb.2022.984801.
  15. Nicoletti R, Bellavita R, Falanga A. The outstanding chemodiversity of marine-derived Talaromyces. Biomolecules. 2023;13(7):1021. doi: 10.3390/biom13071021.
  16. Nicoletti R, Andolfi A, Becchimanzi A, et al. Anti-insect properties of Penicillium secondary metabolites. Microorganisms. 2023;11(5):1302. doi: 10.3390/microorganisms11051302.
  17. Micheli PA. Nova plantarum genera juxta Tournefortii methodum disposita. Florence, Italy: Typis Bernardi Paperinii; 1729.
  18. Samson RA, Visagie CM, Houbraken J, et al. Phylogeny, identification and nomenclature of the genus Aspergillus. Stud Mycol. 2014;78(1):141-173. doi: 10.1016/j.simyco.2014.07.004.
  19. Chen AJ, Hubka V, Frisvad JC, et al. Polyphasic taxonomy of Aspergillus section Aspergillus (formerly Eurotium), and its occurrence in indoor environments and food. Stud Mycol. 2017;88(1):37-135. doi: 10.1016/j.simyco.2017.07.001.
  20. Sklenar F, Jurjevic Z, Peterson SW, et al. Increasing the species diversity in the Aspergillus section Nidulantes: six novel species mainly from the indoor environment. Mycologia. 2020;112(2):342-370. doi: 10.1080/00275514.2019.1698923.
  21. Link HF. Observationes in ordines plantarum naturales. Dissertatio 1. Mag Ges Naturf Freunde Berlin. 1809;3:3-42.
  22. Visagie CM, Houbraken J, Frisvad JC, et al. Identification and nomenclature of the genus Penicillium. Stud Mycol. 2014;78(1):e343371. doi: 10.1016/j.simyco.2014.09.001.
  23. Pangging M, Nguyen TTT, Lee HB. Seven new records of Penicillium species belonging to section Lanata-Divaricata in Korea. Mycobiology. 2021;49(4):363-375. doi: 10.1080/12298093.2021.1952814.
  24. Torres-Garcia D, Gene J, Garcia D. New and interesting species of Penicillium (Eurotiomycetes, Aspergillaceae) in freshwater sediments from Spain. MycoKeys. 2022;86:103-145. doi: 10.3897/mycokeys.86.73861.
  25. Benjamin CR. Ascocarps of Aspergillus and Penicillium. Mycologia. 1955;47(5):669-687. doi: 10.1080/00275514.1955.12024485.
  26. Guevara-Suarez M, Sutton DA, Gene J, et al. Four new species of Talaromyces from clinical sources. Mycoses. 2017;60(10):651-662. doi: 10.1111/myc.12640.
  27. Sun BD, Chen AJ, Houbraken J, et al. New section and species in Talaromyces. MycoKeys. 2020;68:75-113. doi: 10.3897/mycokeys.68.52092.
  28. Nguyen TTT, Frisvad JC, Kirk PM, et al. Discovery and extrolite production of three new species of Talaromyces belonging to sections Helici and Purpurei from freshwater in Korea. J Fungi. 2021;7(9):722. doi: 10.3390/jof7090722.
  29. Nguyen TTT, Lee HB. A new species and five new records of Talaromyces (Eurotiales, Aspergillaceae) belonging to section Talaromyces in Korea. Mycobiology. 2023;51(5):320-332. doi: 10.1080/12298093.2023.2265645.
  30. National Institute of Biological Resources. National species list of Korea. I. Plants, fungi, algae, prokaryotes. Seoul: Designzip; 2019.
  31. Pangging M, Nguyen TTT, Lee HB. Seven undescribed Aspergillus species from different niches in Korea. Mycobiology. 2022;50(4):189-202. doi: 10.1080/12298093.2022.2116158.
  32. Nguyen TTT, Noh KJK, Lee HB. New species and eight undescribed species belonging to the families Aspergillaceae and Trichocomaceae in Korea. Mycobiology. 2021;49(6):534-550. doi: 10.1080/12298093.2021.1997461.
  33. White TJ, Bruns T, Lee S, et al. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ, editors. PCR protocols: a guide to methods and applications. San Diego (CA): Academic Press, 1990. p. 315-322.
  34. de Hoog GS, Gerrits van den Ende AH. Molecular diagnostics of clinical strains of filamentous Basidiomycetes. Mycoses. 1998;41(5-6):183-189. doi: 10.1111/j.1439-0507.1998.tb00321.x.
  35. Aveskamp MM, Verkley GJ, de Gruyter J, et al. DNA phylogeny reveals polyphyly of Phoma section Peyronellaea and multiple taxonomic novelties. Mycology. 2009;101(3):363-382. doi: 10.3852/08-199.
  36. Hubka V, Novakova A, Peterson SW, et al. A reappraisal of Aspergillus section Nidulantes with descriptions of two new sterigmatocystin-producing species. Plant Syst Evol. 2016;302(9):1267-1299. doi: 10.1007/s00606-016-1331-5.
  37. Hong SB, Cho HS, Shin HD, et al. Novel Neosartorya species isolated from soil in Korea. Int J Syst Evol Microbiol. 2006;56(2):477-486. doi: 10.1099/ijs.0.63980-0.
  38. Liu YJ, Whelen S, Hall BD. Phylogenetic relationships among ascomycetes: evidence from an RNA polymerase II subunit. Mol Biol Evol. 1999;16(12):1799-1808. doi: 10.1093/oxfordjournals.molbev.a026092.
  39. Rothacker T, Jaffey JA, Rogers ER, et al. Novel Penicillium species causing disseminated disease in a Labrador Retriever dog. Med Mycol. 2020;58(8):1053-1063. doi: 10.1093/mmy/myaa016.
  40. Index Fungorum. http://www.indexfungorum.org/names/names.asp [accessed 1 October 2023].
  41. Katoh K, Rozewicki J, Yamada KD. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform. 2019;20(4):1160-1166. doi: 10.1093/bib/bbx108.
  42. Tamura K, Stecher G, Peterson D, et al. MEGA7: molecular evolutionary genetics analysis version 7.0. Mol Biol Evol. 2013;30(12):2725-2729. doi: 10.1093/molbev/mst197.
  43. Rambaut A. FigTree, version 1.3. 1. Computer program distributed by the author; 2009. Available from: http://www.treebioedacuk/software/fgtree
  44. Pitt JI. The genus Penicillium and its teleomorphic states Eupenicillium and Talaromyces. London (UK): Academic Press Inc. Ltd.; 1919. 634 pp.
  45. Blakeslee A. Lindner's roll tube method of separation cultures. Phytopathology. 1915;5:68-69.
  46. Frisvad JC. Physiological criteria and mycotoxin production as aids in identification of common asymmetric penicillia. Appl Environ Microbiol. 1981;41(3):568-579. doi: 10.1128/aem.41.3.568-579.1981.
  47. Novakova A, Hubka V, Saiz-Jimenez C, et al. Aspergillus baeticus sp. nov. and Aspergillus thesauricus sp. nov., two species in section Usti from Spanish caves. Int J Syst Evol Microbiol. 2012;62(Pt 11):2778-2785. doi: 10.1099/ijs.0.041004-0.
  48. Visagie CM, Hirooka Y, Tanney JB, et al. Aspergillus, Penicillium and Talaromyces isolated from house dust samples collected around the world. Stud Mycol. 2014;78(1):63-139. doi: 10.1016/j.simyco.2014.07.002.
  49. Chen AJ, Frisvad JC, Sun BD, et al. Aspergillus section Nidulantes (formerly Emericella): polyphasic taxonomy, chemistry and biology. Stud Mycol. 2016;84(1):1-118. doi: 10.1016/j.simyco.2016.10.001.
  50. Perini L, Gostincar C, Likar M, et al. Interactions of fungi and algae from the Greenland Ice Sheet. Microb Ecol. 2022;86(1):282-296. doi: 10.1007/s00248-022-02033-5.
  51. Laxa O. uber die Reifung des Ellischauer Kases. Zentralblatt fur Bakteriologie und Parasitenkunde Abteilung. 1932;2(86):160-165.
  52. Frisvad JC, Yilmaz N, Thrane U, et al. Talaromyces atroroseus, a new species efficiently producing industrially relevant red pigments. PLOS One. 2013;8(12):e84102. doi: 10.1371/journal.pone.0084102.
  53. Zhang X, Li Z, Gao J. Chemistry and biology of secondary metabolites from Aspergillus genus. J Nat Prod. 2018;8(4):275-304.
  54. Zhai MM, Li J, Jiang CX, et al. The bioactive secondary metabolites from Talaromyces species. Nat Prod Bioprospect. 2016;6(1):1-24. doi: 10.1007/s13659-015-0081-3.
  55. Jain A, Chatterjee A, Das S. Synergistic consortium of beneficial microorganisms in rice rhizosphere promotes host defense to blight-causing Xanthomonas oryzae pv. oryzae. Planta. 2020;252(6):106. doi: 10.1007/s00425-020-03515-x.
  56. York A. Tumour-specific microbiomes. Nat Rev Microbiol. 2020;18(8):413-413. doi: 10.1038/s41579-020-0405-0.
  57. Li Q, Kong D, Wang Y, et al. Characterization of a rare clinical isolate of A. spinulosporus following a central nervous system infection. Microbes Infect. 2022;24(5):104973. doi: 10.1016/j.micinf.2022.104973.
  58. Siqueira JP, Wiederhold N, Gene J, et al. Cryptic Aspergillus from clinical samples in the USA and description of a new species in section Flavipedes. Mycoses. 2018;61(11):814-825. doi: 10.1111/myc.12818.
  59. Sabino R, Burco J, Valente J, et al. Molecular identification of clinical and environmental avian Aspergillus isolates. Arch Microbiol. 2019;201(2):253-257. doi: 10.1007/s00203-019-01618-y.
  60. Tavakoli M, Rivero-Menendez O, Abastabar M, et al. Genetic diversity and antifungal susceptibility patterns of Aspergillus nidulans complex obtained from clinical and environmental sources. Mycoses. 2020;63(1):78-88. doi: 10.1111/myc.13019.
  61. Steenwyk JL, Lind AL, Ries LN, et al. Pathogenic allodiploid hybrids of Aspergillus fungi. Curr Biol. 2020;30(13):2495-2507.e7. doi: 10.1016/j.cub.2020.04.071.
  62. Shehata AN, Abd El Aty AA, Darwish DA, et al. Purification, physicochemical and thermodynamic studies of antifungal chitinase with production of bioactive chitosan-oligosaccharide from newly isolated Aspergillus griseoaurantiacus. Int J Biol Macromol. 2018;107(Pt A):990-999. doi: 10.1016/j.ijbiomac.2017.09.071.
  63. Jurado V, Del Rosal Y, Linan C, et al. Diversity and seasonal dynamics of airborne fungi in Nerja Cave, Spain. Appl Sci. 2021;11(13):6236. doi: 10.3390/app11136236.
  64. Monpierre L, Soetart N, Valsecchi I, et al. Penicillium and Talaromyces spp. emerging pathogens in dogs since 1990s. Med Mycol J. 2023;61(8):myad087.
  65. Larsen TO, Breinholt J. Dichlorodiaportin, diaportinol, and diaportinic acid: three novel isocoumarins from Penicillium nalgiovense. J Nat Prod. 1999;62(8):1182-1184. doi: 10.1021/np990066b.
  66. Andersen SJ, Frisvad JC. Penicillin production by Penicillium nalgiovense. Lett Appl Microbiol. 1994;19(6):486-488. doi: 10.1111/j.1472-765x.1994.tb00988.x.
  67. Emri T, Toth V, Nagy CT, et al. Towards high-siderophore-content foods: optimisation of coprogen production in submerged cultures of Penicillium nalgiovense. J Sci Food Agric. 2013;93(9):2221-2228. doi: 10.1002/jsfa.6029.
  68. Svahn KS, Chryssanthou E, Olsen B, et al. Penicillium nalgiovense Laxa isolated from Antarctica is a new source of the antifungal metabolite amphotericin B. Fungal Biol Biotechnol. 2015;2(1):1-8. doi: 10.1186/s40694-014-0011-x.
  69. Ludemann V, Greco M, Rodriguez MP, et al. Conidial production by Penicillium nalgiovense for use as starter cultures in dry fermented sausages by solid state fermentation. LWT Food Sci Technol. 2010;43(2):315-318. doi: 10.1016/j.lwt.2009.07.011.
  70. Papagianni M, Sergelidis D. Purification and biochemical characterization of a novel alkaline protease produced by Penicillium nalgiovense. Appl Biochem Biotechnol. 2014;172(8):3926-3938. doi: 10.1007/s12010-014-0824-3.
  71. Okada K, Kano R, Hasegawa T, et al. Granulomatous polyarthritis caused by Talaromyces georgiensis in a dog. J Vet Diagn Invest. 2020;32(6):912-917. doi: 10.1177/1040638720957964.
  72. Guevara-Suarez M, Garcia D, Cano-Lira JF, et al. Species diversity in Penicillium and Talaromyces from herbivore dung, and the proposal of two new genera of Penicillium-like fungi in Aspergillaceae. Fungal Syst Evol. 2020;5(1):39-75. doi: 10.3114/fuse.2020.05.03.