DOI QR코드

DOI QR Code

Influence of Storage Temperature on Levels of Bioactive Compounds in Shiitake Mushrooms (Lentinula edodes)

  • Yonghyun Kim (Special Forest Resources Division, National Institute of Forest Science) ;
  • Uk Lee (Special Forest Resources Division, National Institute of Forest Science) ;
  • Hyun Ji Eo (Special Forest Resources Division, National Institute of Forest Science)
  • 투고 : 2023.08.28
  • 심사 : 2023.10.10
  • 발행 : 2023.12.31

초록

Shiitake mushroom (Lentinula edodes) hold high nutritional and medicinal value as they contain an abundance of health-promoting compounds. However, the effect of long-term postharvest storage on the variation in the levels of health-promoting compounds has not been extensively studied. In this study, we investigated the changes in the levels of phenolic compounds, antioxidants, eritadenine, and ergothioneine in shiitake mushrooms stored at three different temperatures (1, 3, and 5 ℃) for 4 weeks. Compared to mushrooms stored at lower temperatures, those stored at 5 ℃ exhibited a higher level of total phenolics in their pileus after 2 weeks of storage; however, storage at 5 ℃ also increased the deterioration of the fruiting body of these mushrooms. In mushrooms stored at all temperatures, the eritadenine content in the pilei tended to increase up to 2 weeks of storage. In contrast, the ergothioneine content in the pileus decreased during storage, with a significantly lower level detected in mushrooms stored at 5 ℃ for 4 weeks. Together, these results suggest that the mechanisms underlying the accumulation of phenolics and eritadenine may be related to mushroom deterioration during storage. Our findings indicate that the levels of health-promoting compounds in shiitake mushrooms are influenced by storage temperature, suggesting the potential to control adjustments of specific bioactive compounds by regulating storage conditions.

키워드

과제정보

The authors would like to thank Ms. M.H. Lee, Ms. J.H. Ahn, and Mr. S.G. Lee, National Institute of Forest Science, Republic of Korea, for their assistance in conducting the experiments.

참고문헌

  1. Salwan R, Katoch S, Sharma V. Recent developments in shiitake mushrooms and their nutraceutical importance. In: Dai X, Sharma M, Chen J, editors. Fungi sustainable food prod. Cham: Springer International Publishing; 2021. p. 165-180.
  2. Goh YJ, Kim YH, Lee B, et al. A study on decompresses heat pump dryer for drying of shiitake mushrooms at medium temperature. IOP Conf. Ser.: Mater. Sci. Eng. 2019;638(1):012003. doi: 10.1088/1757-899X/638/1/012003.
  3. Ahmad I, Arif M, Xu M, et al. Therapeutic values and nutraceutical properties of shiitake mushroom (Lentinula edodes): a review. Trends Food Sci Technol. 2023;134:123-135. doi: 10.1016/j.tifs.2023.03.007.
  4. Li Y, Ishikawa Y, Satake T, et al. Effect of active modified atmosphere packaging with different initial gas compositions on nutritional compounds of shiitake mushrooms (Lentinus edodes). Postharvest Biol Biotechnol. 2014;92:107-113. doi: 10.1016/j.postharvbio.2013.12.017.
  5. Gholami R, Ahmadi E, Farris S. Shelf life extension of white mushrooms (Agaricus bisporus) by low temperatures conditioning, modified atmosphere, and nanocomposite packaging material. Food Packag Shelf Life. 2017;14:88-95. doi: 10.1016/j.fpsl.2017.09.001.
  6. Azevedo S, Cunha LM, Oliveira JC, et al. Modelling the influence of time, temperature and relative humidity conditions on the mass loss rate of fresh oyster mushrooms. J Food Eng. 2017;212: 108-112. doi: 10.1016/j.jfoodeng.2017.05.026.
  7. Singh P, Langowski H-C, Wani AA, et al. Recent advances in extending the shelf life of fresh Agaricus mushrooms: a review. J Sci Food Agric. 2010;90(9):1393-1402. doi: 10.1002/jsfa.3971.
  8. Zhishen J, Mengcheng T, Jianming W. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 1999;64(4):555-559. doi: 10.1016/S0308-8146(98)00102-2.
  9. Singleton VL, Orthofer R, Lamuela-Raventos RM. Analysis of total phenols and other oxidation substrates and antioxidants by means of FolinCiocalteu reagent. Methods Enzymol. 1999;299: 152-178. https://doi.org/10.1016/S0076-6879(99)99017-1
  10. Stoilova I, Krastanov A, Stoyanova A, et al. Antioxidant activity of a ginger extract (Zingiber officinale). Food Chem. 2007;102(3):764-770. doi: 10.1016/j.foodchem.2006.06.023.
  11. Biglari F, AlKarkhi AFM, Easa AM. Antioxidant activity and phenolic content of various date palm (Phoenix dactylifera) fruits from Iran. Food Chem. 2008;107(4):1636-1641. doi: 10.1016/j.foodchem.2007.10.033.
  12. Liu W, Feng Y, Yu S, et al. The flavonoid biosynthesis network in plants. Int J Mol Sci. 2021;22(23):12824. doi: 10.3390/ijms222312824.
  13. Boudet A-M. Evolution and current status of research in phenolic compounds. Phytochemistry. 2007;68(22-24):2722-2735. doi: 10.1016/j.phytochem.2007.06.012.
  14. Panche AN, Diwan AD, Chandra SR. Flavonoids: an overview. J Nut Sci. 2016;5:e47.
  15. Li Y, Ding S, Kitazawa H, et al. Storage temperature effect on quality related with cell wall metabolism of shiitake mushrooms (Lentinula edodes) and its modeling. Food Packag Shelf Life. 2022;32:100865. doi: 10.1016/j.fpsl.2022.100865.
  16. Subramaniam S, Jiao S, Zhang Z, et al. Impact of post-harvest processing or thermal dehydration on physiochemical, nutritional and sensory quality of shiitake mushrooms. Compr Rev Food Sci Food Saf. 2021;20(3):2560-2595. doi: 10.1111/1541-4337.12738.
  17. Marc,al S, Sousa AS, Taofiq O, et al. Impact of postharvest preservation methods on nutritional value and bioactive properties of mushrooms. Trends Food Sci Technol. 2021;110:418-431. doi:10.1016/j.tifs.2021.02.007.
  18. Guo Y, Chen X, Gong P, et al. Effect of shiitake mushrooms polysaccharide and chitosan coating on softening and browning of shiitake mushrooms (Lentinus edodes) during postharvest storage. Int J Biol Macromol. 2022;218:816-827. doi: 10.1016/j.ijbiomac.2022.07.193.
  19. Aa C, MaC A, Chaves AR. Characterization and changes in polyphenol oxidase from eggplant fruit (Solanum melongena L.) during storage at low temperature. Food Chem. 2004;88(1):17-24. https://doi.org/10.1016/j.foodchem.2004.01.017
  20. Li R, Zheng Q, Lu J, et al. Chemical composition and deterioration mechanism of Pleurotus tuoliensis during postharvest storage. Food Chem. 2021;338:127731. doi: 10.1016/j.foodchem.2020.127731.
  21. Bisen P, Baghel RK, Sanodiya BS, et al. Lentinus edodes: a macrofungus with pharmacological activities. Curr Med Chem. 2010;17(22):2419-2430. doi:10.2174/092986710791698495.
  22. Afrin S, Rakib MA, Kim BH, et al. Eritadenine from edible mushrooms inhibits activity of angiotensin converting enzyme in vitro. J Agric Food Chem. 2016;64(11):2263-2268. doi: 10.1021/acs.jafc.5b05869.
  23. Itoh H, Morimoto T, Kawashima K, et al. Isolation of intermediate in biosynthesis of eritadenine from adenine. Experientia. 1973;29(3):271-271. doi: 10.1007/BF01926468.
  24. Zhang J, Yao S, Zang R, et al. Effects of heat stress and the addition of different purines on the synthesis of eritadenine in liquid fermentation of shiitake culinary-medicinal mushroom, Lentinula edodes (Agaricomycetes). Int J Med Mushrooms. 2021;23(12):85-91. doi: 10.1615/IntJMedMushrooms.2021041560.
  25. Sun L-B, Zhang Z-y, Xin G, et al. Advances in umami taste and aroma of edible mushrooms. Trends Food Sci Technol. 2020;96:176-187. doi:10.1016/j.tifs.2019.12.018.
  26. Zhang Z, Zhang X, Xin G, et al. Umami taste and its association with energy status in harvested Pleurotus geesteranus stored at different temperatures. Food Chem. 2019;279:179-186. doi: 10.1016/ j.foodchem.2018.12.010.
  27. Paul BD, Snyder SH. The unusual amino acid Lergothioneine is a physiologic cytoprotectant. Cell Death Differ. 2010;17(7):1134-1140. doi: 10.1038/cdd.2009.163.
  28. Dubost NJ, Ou B, Beelman RB. Quantification of polyphenols and ergothioneine in cultivated mushrooms and correlation to total antioxidant capacity. Food Chem. 2007;105(2):727-735. doi: 10. 1016/j.foodchem.2007.01.030. https://doi.org/10.1016/j.foodchem.2007.01.030
  29. Yu Y-H, Pan H-Y, Guo L-Q, et al. Successful biosynthesis of natural antioxidant ergothioneine in Saccharomyces cerevisiae required only two genes from Grifola frondosa. Microb Cell Fact. 2020;19(1):164. doi: 10.1186/s12934-020-01421-1.
  30. Stampfli AR, Blankenfeldt W, Seebeck FP. Structural basis of ergothioneine biosynthesis. Curr Opin Struct Biol. 2020;65:1-8. doi: 10.1016/j.sbi.2020.04.002.