DOI QR코드

DOI QR Code

Determining Potential Link between Environmental and Clinical Isolates of Cryptococcus neoformans/Cryptococcus gattii Species Complexes Using Phenotypic and Genotypic Characterisation

  • Kenosi Kebabonye (School of Health Allied Professions, Faculty of Health Sciences, University of Botswana) ;
  • Mosimanegape Jongman (Department of Biological Sciences, Faculty of Science, University of Botswana) ;
  • Daniel Loeto (Department of Biological Sciences, Faculty of Science, University of Botswana) ;
  • Sikhulile Moyo (School of Health Allied Professions, Faculty of Health Sciences, University of Botswana) ;
  • Wonderful Choga (Research Laboratory, Botswana Harvard AIDS Institute Partnership) ;
  • Ishmael Kasvosve (School of Health Allied Professions, Faculty of Health Sciences, University of Botswana)
  • 투고 : 2023.02.16
  • 심사 : 2023.10.10
  • 발행 : 2023.12.31

초록

Opportunistic infections due to Cryptococcus neoformans and C. gattii species complexes continue to rise unabated among HIV/AIDS patients, despite improved antifungal therapies. Here, we collected a total of 20 environmental and 25 presumptive clinical cryptococcal isolates from cerebrospinal fluid (CSF) samples of 175 patients enrolled in an ongoing clinical trial Ambition 1 Project (Botswana-Harvard Partnership). Identity confirmation of the isolates was done using MALDI-TOF MS and PCR. We describe the diversity of the isolates by PCR fingerprinting and sequencing (Oxford Nanopore Technology) of the intergenic spacer region. Mating types of the isolates were determined by amplification of the MAT locus. We report an unusual prevalence of 42.1% of C. neoformans × C. deneoformans hybrids Serotype AD (n = 16), followed by 39.5% of C. neoformans Serotype A (n = 15), 5.3% of C. deneoformans, Serotype D (n = 2), 7.9% of C. gattii (n = 3), and 5.3% of C. tetragattii (n = 2) in 38 representative isolates that have been characterized. Mating type-specific PCR performed on 38 representative environmental and clinical isolates revealed that 16 (42.1%) were MATa/MAT𝛼 hybrids, 17 (44.7%) were MAT𝛼, and five (13.2%) possessed MATa mating type. We used conventional and NGS platforms to demonstrate a potential link between environmental and clinical isolates and lay a foundation to further describe mating patterns/history in Botswana.

키워드

과제정보

The authors would like to express sincere gratitude to Professor Joe Jarvis and Ms Kwana Lechile who availed clinical isolates from their Ambition 1 Project. The MALDI-TOF MS for species identification was performed in Prof Lise Korsten's laboratory in University of Pretoria, and the biotyper was acquired from the National Research Foundation (NRF) of South Africa. We would like to send sincere gratitude to Prof. Wieland Meyer (Molecular Mycology Research Laboratory, Westmead Hospital, Australia) as the reference isolates used in our study originated from their laboratory.

참고문헌

  1. Rajasingham R, Smith RM, Park BJ, et al. Global burden of disease of HIV-associated cryptococcal meningitis: an updated analysis. Lancet Infect Dis. 2017;17(8):873-881. doi: 10.1016/S1473-3099(17)30243-8.
  2. You M, Xu J. The effects of environmental and genetic factors on the germination of basidiospores in the Cryptococcus gattii species complex. Sci Rep. 2018;8(1):15260. doi: 10.1038/s41598-018-33679-2.
  3. Tavares ER, Gionco B, Morguette AEB, et al. Phenotypic characteristics and transcriptome profile of Cryptococcus gattii biofilm. Sci Rep. 2019;9(1):6438. doi: 10.1038/s41598-019-42896-2.
  4. Trilles L, Lazera MdS, Wanke B, et al. Regional pattern of the molecular types of Cryptococcus neoformans and Cryptococcus gattii in Brazil. Mem Inst Oswaldo Cruz. 2008;103(5):455-462. doi: 10.1590/s0074-02762008000500008.
  5. Firacative C, Trilles L, Meyer W. MALDI-TOF MS enables the rapid identification of the major molecular types within the Cryptococcus neoformans/C. gattii species complex. PLoS One. 2012;7(5):e37566. doi: 10.1371/journal.pone.0037566.
  6. Herkert P, Hagen F, Pinheiro R, et al. Ecoepidemiology of Cryptococcus gattii in developing countries. JoF. 2017;3(4):62. doi: 10.3390/jof3040062.
  7. Hurtado JC, Castillo P, Fernandes F, et al. Mortality due to Cryptococcus neoformans and Cryptococcus gattii in low-income settings: an autopsy study. Sci Rep. 2019;9(1):7493. doi: 10.1038/s41598-019-43941-w.
  8. Torres RG, Etchebehere RM, Adad SJ, et al. Cryptococcosis in acquired immunodeficiency syndrome patients clinically confirmed and/or diagnosed at necropsy in a teaching hospital in Brazil. Am J Trop Med Hyg. 2016;95(4):781-785. doi: 10.4269/ajtmh.16-0148.
  9. Hagen F, Khayhan K, Theelen B, et al. Recognition of seven species in the Cryptococcus gattii/Cryptococcus neoformans species complex. Fungal Genet Biol. 2015;78:16-48. doi: 10.1016/j.fgb.2015.02.009.
  10. Farrer RA, Desjardins CA, Sakthikumar S, et al. Genome evolution and innovation across the four major lineages of Cryptococcus gattii. MBio. 2015;6(5):e00868-e00815. doi: 10.1128/mBio.00868-15.
  11. Hu S, Gu F, Chen M, et al. A novel method for identifying and distinguishing Cryptococcus neoformans and Cryptococcus gattii by surface-enhanced Raman scattering using positively charged silver nanoparticles. Sci Rep. 2020;10(1):12480. doi: 10.1038/s41598-020-68978-0.
  12. Maziarz EK, Perfect JR. Cryptococcosis. Infect Dis Clin North Am. 2016;30(1):179-206. doi: 10.1016/j.idc.2015.10.006.
  13. Clark AE, Kaleta EJ, Arora A, et al. Matrix-assisted laser desorption ionization-time of flight mass spectrometry: a fundamental shift in the routine practice of clinical microbiology. Clin Microbiol Rev. 2013;26(3):547-603. doi: 10.1128/CMR.00072-12.
  14. Meyer W, Aanensen DM, Boekhout T, et al. Consensus multi-locus sequence typing scheme for Cryptococcus neoformans and Cryptococcus gattii. Med Mycol. 2009;47(6):561-570. doi: 10.1080/13693780902953886.
  15. Staib F. Cryptococcus neoformans and Guizotia abyssinica (syn. G. oleifera DC).(colour reaction for Cr. neoformans). Zeitschr f Hygiene. 1962;148(5):466-475. doi: 10.1007/BF02156784.
  16. Litvintseva AP, Carbone I, Rossouw J, et al. Evidence that the human pathogenic fungus Cryptococcus neoformans var. grubii may have evolved in Africa. PLoS One. 2011;6(5):e19688. doi: 10.1371/journal.pone.0019688.
  17. Campbell LT, Fraser JA, Nichols CB, et al. Clinical and environmental isolates of Cryptococcus gattii from Australia that retain sexual fecundity. Eukaryot Cell. 2005;4(8):1410-1419. doi: 10.1128/EC.4.8.1410-1419.2005.
  18. Meyer W, Marszewska K, Amirmostofian M, et al. Molecular typing of global isolates of Cryptococcus neoformans var. neoformans by polymerase chain reaction fingerprinting and randomly amplified polymorphic DNA-a pilot study to standardize techniques on which to base a detailed epidemiological survey. ELECTROPHORESIS: Int J. 1999;20(8):1790-1799. doi: 10.1002/(SICI)1522-2683(19990101)20:8<1790::AID-ELPS1790>3.0.CO;2-2.
  19. Tavares ER, Azevedo CS, Panagio LA, et al. Accurate and sensitive real-time PCR assays using intergenic spacer 1 region to differentiate Cryptococcus gattii sensu lato and Cryptococcus neoformans sensu lato. Med Mycol. 2016;54(1):89-96. doi: 10.1093/mmy/myv078.
  20. Bohl JA, Lay S, Chea S, et al. Discovering disease-causing pathogens in resource-scarce southeast asia using a global metagenomic pathogen monitoring system. Proc Natl Acad Sci USA. 2022; 119(11):e2115285119. doi: 10.1073/pnas.2115285119.
  21. Morrison GA, Fu J, Lee GC, et al. Nanopore sequencing of the fungal intergenic spacer sequence as a potential rapid diagnostic assay. J Clin Microbiol. 2020;58(12):e01972-20. doi: 10.1128/JCM.01972-20.
  22. Tamura K, Stecher G, Kumar S. MEGA11: molecular evolutionary genetics analysis version 11. Mol Biol Evol. 2021;38(7):3022-3027. doi: 10.1093/molbev/msab120.
  23. Sagulenko P, Puller V, Neher RA. TreeTime: maximum-likelihood phylodynamic analysis. Virus Evol. 2018;4(1):vex042. doi: 10.1093/ve/vex042.
  24. Kelentse N, Moyo S, Molebatsi K, et al. Reversal of CSF HIV-1 escape during treatment of HIV-Associated cryptococcal meningitis in Botswana. Biomedicines. 2022;10(6):1399. doi: 10.3390/biomedicines10061399.
  25. Vreulink J-M, Khayhan K, Hagen F, et al. Presence of pathogenic cryptococci on trees situated in two recreational areas in South Africa. Fungal Ecol. 2017;30:101-111. doi: 10.1016/j.funeco.2017.09.005.
  26. Litvintseva AP, Xu J, Mitchell TG. Population structure and ecology of Cryptococcus neoformans and Cryptococcus gattii. Cryptococcus: from Human Pathogen to Model Yeast. 2010;2:97-111.
  27. Mashabane L, Wessels D, Potgieter M. The utilisation of Colophospermum mopane by the Vatsonga in the Gazankulu region (eastern Northern Province, South Africa). South Afr J Bot. 2001;67(2):199-205. doi: 10.1016/S0254-6299(15) 31120-0.
  28. Vogel G. For more protein, filet of cricket. Science. 2010;327(5967):811-811. doi: 10.1126/science.327.5967.811.
  29. Morrison VA. Echinocandin antifungals: review and update. Expert Rev anti Infect Ther. 2006;4(2):325-342. doi: 10.1586/14787210.4.2.325.
  30. Nicholls SM, Quick JC, Tang S, et al. Ultra-deep, long-read nanopore sequencing of mock microbial community standards. GigaScience. 2019;8(5):giz043. doi: 10.1093/gigascience/giz043.
  31. Chau TT, Mai NH, Phu NH, et al. Research article a prospective descriptive study of Cryptococcal meningitis in HIV uninfected patients in Vietnam-high prevalence of Cryptococcus neoformans var. grubii in the absence of underlying disease. BMC Infect Dis. 2010;10:199. doi: 10.1186/1471-2334-10-199.
  32. Jain N, Cook E, Xess I, et al. Isolation and characterization of senescent Cryptococcus neoformans and implications for phenotypic switching and pathogenesis in chronic cryptococcosis. Eukaryot Cell. 2009;8(6):858-866. doi: 10.1128/EC.00017-09.
  33. Meyer W, et al. Molecular typing of the Cryptococcus neoformans/Cryptococcus gattii species complex. Cryptococcus: from Human Pathogen to Model Yeast. 2010;:327-357.
  34. Kidd SE, Hagen F, Tscharke RL, et al. A rare genotype of Cryptococcus gattii caused the cryptococcosis outbreak on Vancouver Island (British Columbia, Canada). Proc Natl Acad Sci USA. 2004;101(49):17258-17263. doi: 10.1073/pnas.0402981101.
  35. Acheson ES, Galanis E, Bartlett K, et al. Searching for clues for eighteen years: deciphering the ecological determinants of Cryptococcus gattii on Vancouver Island, British Columbia. Med Mycol. 2018;56(2):129-144. doi: 10.1093/mmy/myx037.
  36. Chen Y, Litvintseva AP, Frazzitta AE, et al. Comparative analyses of clinical and environmental populations of Cryptococcus neoformans in Botswana. Mol Ecol. 2015;24(14):3559-3571. doi: 10.1111/mec.13260.
  37. Litvintseva AP, Thakur R, Reller LB, et al. Prevalence of clinical isolates of Cryptococcus gattii serotype C among patients with AIDS in Sub-Saharan Africa. J Infect Dis. 2005;192(5):888-892. doi: 10.1086/432486.
  38. Litvintseva AP, Thakur R, Vilgalys R, et al. Multilocus sequence typing reveals three genetic subpopulations of Cryptococcus neoformans var. grubii (serotype a), including a unique population in Botswana. Genetics. 2006;172(4):2223-2238. doi: 10.1534/genetics.105.046672.
  39. Sukroongreung S, Kitiniyom K, Nilakul C, et al. Pathogenicity of basidiospores of Filobasidiella neoformans var. neoformans. Med Mycol. 1998;36(6):419-424. doi: 10.1046/j.1365-280X.1998.00181.x.
  40. Velagapudi R, Hsueh Y-P, Geunes-Boyer S, et al. Spores as infectious propagules of Cryptococcus neoformans. Infect Immun. 2009;77(10):4345-4355. doi: 10.1128/IAI.00542-09.
  41. Kwon-Chung K. A new genus, filobasidiella, the perfect state of Cryptococcus neoformans. Mycologia. 1975;67(6):1197-1200. doi: 10.2307/3758842.
  42. Chen Z-F, Ying G-G. Occurrence, fate and ecological risk of five typical azole fungicides as therapeutic and personal care products in the environment: a review. Environ Int. 2015;84:142-153. doi: 10.1016/j.envint.2015.07.022.