DOI QR코드

DOI QR Code

A Study on the Predictability of Moist Convection during Summer based on CAPE and CIN

대류가용잠재에너지와 대류억제도에 입각한 여름철 습윤 대류 예측성에 대한 연구

  • Doyeol Maeng (Department of Atmospheric and Environmental Sciences, Gangneung-Wonju National University) ;
  • Songlak Kang (Department of Atmospheric and Environmental Sciences, Gangneung-Wonju National University)
  • 맹도열 (강릉원주대학교 대기환경과학과) ;
  • 강성락 (강릉원주대학교 대기환경과학과)
  • Received : 2023.04.19
  • Accepted : 2023.12.19
  • Published : 2023.12.31

Abstract

This study analyzed rawinsonde soundings observed during the summer and early fall seasons (June, July, August and September) on the Korean peninsula to examine the utility of the Convective Available Potential Energy (CAPE) and Convective Inhibition (CIN) in predicting the occurrence of deep moist convection and precipitation. Rawinsonde soundings are categorized into two groups based on thermodynamic criteria: high CAPE and low CIN represent a high potential for deep moist convection; low CAPE and high CIN indicate conditions unfavorable for deep convection. A statistical hypothesis test is conducted to determine whether the two groups are significantly different in terms of 12-hour cumulative precipitation, 12-hour mean cloud base, and 12-hour mean mid-level cloud cover. The results, in the case of no-precipitation, reveal statistically significant differences between the two groups, except for the 12-hour mean cloud base during the 21:01-09:00 KST time period. This suggests that the group characterized by high CAPE and low CIN is more conducive to the occurrence of deep moist convection and precipitation than the group with low CAPE and high CIN.

본 연구는 여름 및 초가을(6-9월)에 한반도에서 관측된 레윈존데 사운딩을 분석하여 대류가용잠재에너지와 대류억제도가 깊은 습윤 대류 및 강수 발생 예측에 유용성이 있는지를 확인해보았다. 레원존데 사운딩은 열역학적으로 깊은 습윤 대류가 발생할 가능성이 높은 고 대류가용잠재에너지 저 대류억제도 그룹과 대류 발생을 억제시킬 수 있는 저 대류가용잠재에너지 고 대류억제도 그룹으로 분류하였다. 이후, 두 그룹의 12시간 누적 강수량, 12시간 평균 최저운고, 12시간 평균 중하층운량의 분포 차이가 유의미한지 여부를 통계적 가설검정을 통해 확인하였다. 그 결과, 무강수인 경우 21:01-09:00 KST 시간대의 12시간 평균 최저운고를 제외하고 두 그룹은 통계적으로 유의미한 차이가 있음이 검증되었다. 이 결과는 고 대류가용잠재에너지 저 대류억제도 그룹이 저 대류가용잠재에너지 고 대류억제도 그룹보다 깊은 습윤 대류 및 강수 발생에 더 유리함을 시사한다.

Keywords

Acknowledgement

이 논문은 2022년도 연구재단의 중점연구소(2021R1A6A1A03044326)와 지역우수과학자(2021R1I1A3044379) 사업의 지원을 받아 수행된 연구입니다.

References

  1. Ganjir, G., Pattnaik, S., and Trivedi, D., 2022, Characteristics of dynamical and thermo-dynamical variables during heavy rainfall events over the Indian region. Dynamics of Atmospheres and Oceans, 99, 101315.
  2. Jung, S. P., In, S. R., Kim, H. W., Sim, J., Han, S. O., and Choi, B. C., 2015, Classification of atmospheric vertical environment associated with heavy rainfall using long-term radiosonde observational data, 1997-2013. Atmosphere, 25(4), 611-622. https://doi.org/10.14191/ATMOS.2015.25.4.611
  3. Kim, B. Y., Cha, J. W., Ko, A. R., Jung, W., and Ha, J. C., 2020, Analysis of the occurrence frequency of seedable clouds on the Korean Peninsula for precipitation enhancement experiments. Remote Sensing, 12(9), 1487.
  4. Lee, J. H., and Kang, S. L., 2021, Analysis of extreme precipitation in Yeongdong region of Korea over the 48 years, 1972-2019. The Korean Data & Information Science Society, 32(4), 821-851. https://doi.org/10.7465/jkdi.2021.32.4.821
  5. Lee, S. M., and Byun, H. R., 2011, Distribution of convective energy at upper level in South Korea and the possibility of artificial showery rain caused by activated CAPE. Theoretical and applied climatology, 105, 537-551. https://doi.org/10.1007/s00704-011-0408-x
  6. Korea Meteorological Administration, 2020, Korean climate change assessment report 2020, Korea Meteorological Administration, Korea, 42.
  7. Maeng, D. Y., and Kang, S. L., 2023, Analysis of rawinsonde summertime observations over the Korean peninsula: Based on the CAPE and CIN. Journal of the Korean Data & Information Science Society, 34(2), 177-201. https://doi.org/10.7465/jkdi.2023.34.2.177
  8. Nam, H. G., Guo, J., Kim, H. U., Jeong, J., Kim, B. J., Shim, J. K., and Kim, B. G., 2019, A study of the characteristics of heavy rainfall in Seoul with the classification of atmospheric vertical structures. Journal of the Korean earth science society, 40(6), 572-583. https://doi.org/10.5467/JKESS.2019.40.6.572
  9. Shin, S., Hwang, S. E., Lee, Y. T., Kim, B. T., and Kim, K. H., 2021, Analyzing the Characteristics of Atmospheric Stability from Radiosonde Observations in the Southern Coastal Region of the Korean Peninsula during the Summer of 2019. Journal of the Korean earth science society, 42(5), 496-503. https://doi.org/10.5467/JKESS.2021.42.5.496
  10. Sung, J. H., Kang, H. S., Park, S., Cho, C., Bae, D. H., and Kim, Y. O., 2012, Projection of extreme precipitation at the end of 21st century over South Korea based on representative concentration pathways (RCP). Atmosphere, 22(2), 221-231. https://doi.org/10.14191/ATMOS.2012.22.2.221
  11. Zhuang, Y., Fu, R., and Wang, H., 2018, How do environmental conditions influence vertical buoyancy structure and shallow-to-deep convection transition across different climate regimes? Journal of the Atmospheric Sciences, 75(6), 1909-1932. https://doi.org/10.1175/JAS-D-17-0284.1