DOI QR코드

DOI QR Code

Enhancement of High-Temperature Catalytic Reactions Using Membranes

분리막을 이용한 고온 촉매 반응 효율 향상

  • Eun-Young Kim (C1 Gas & Carbon Convergent Research Center, Korea Research Institute of Chemical Technology) ;
  • Myeong-Hun Hyeon (C1 Gas & Carbon Convergent Research Center, Korea Research Institute of Chemical Technology) ;
  • Su-Young Moon (C1 Gas & Carbon Convergent Research Center, Korea Research Institute of Chemical Technology)
  • 김은영 (한국화학연구원 수소C1가스연구센터) ;
  • 현명훈 (한국화학연구원 수소C1가스연구센터) ;
  • 문수영 (한국화학연구원 수소C1가스연구센터)
  • Received : 2023.12.05
  • Accepted : 2023.12.12
  • Published : 2023.12.31

Abstract

Various methods for removing by-products from chemical reactions are being studied to improve yield of catalytic reaction. Since the water is predominantly generated as a by-product in industrially significant reactions, it is necessary to develop the technology that can reliably remove water over a wide range of temperatures. Although several strategies using absorbents and additional dehydration reactions, have been proposed, they have limitations due to the issues such as additional energy and time consuming steps and sustainability of conversion. Membrane technology, which offers advantages such as easy operation, installation, and low maintenance costs, proves to be a promising approach for enhancing the efficiency of catalysts in various catalytic reactions. Therefore, this review discusses the removal of by-products using membranes and the associated benefits in this context.

화학 반응의 수율 향상을 위해 부산물을 제거하는 다양한 방법이 연구되고 있다. 특히 산업적으로 중요한 반응에서 주로 부산물로 물이 생성되기 때문에 넓은 범위의 온도에서 안정적으로 물을 분리하는 기술이 필요하다. 흡수제의 사용, 탈수 반응의 도입 등 다양한 방법이 제안되었으나 추가적인 에너지 및 시간 소요, 전환율의 지속 가능성 등의 문제로 한계를 가지고 있다. 그에 반해 운전 및 설치가 용이하고, 낮은 유지비용 등의 장점을 가지고 있는 분리막 기술은 다양한 촉매 반응에 도입되었을 때 안정적으로 부산물을 제거할 수 있어 반응의 효율을 향상시킬 수 있는 좋은 방안이다. 따라서 본 총설에서는 분리막을 이용한 부산물 제거 및 이를 통한 효과에 대해 논의하였다.

Keywords

Acknowledgement

이 논문은 한국화학연구원(KRICT)의 과제 '(KRICT Build-up R&D) 촉매반응 효율 향상을 위한 반응-분리 하이브리드 플랫폼 기술 개발'에서 지원을 받아 진행하였습니다.

References

  1. I. S. Metcalfe, B. Ray, C. Dejoie, W. Hu, C. de Leeuwe, C. Dueso, F. R. Garcia-Garcia, C.-M. Mak, E. I. Papaioannou, and C. R. Thompson, "Overcoming chemical equilibrium limitations using a thermodynamically reversible chemical reactor", Nat. Chem., 11, 638-643 (2019). https://doi.org/10.1038/s41557-019-0273-2
  2. J. van Kampen, J. Boon, F. van Berkel, J. Vente, and M. van Sint Annaland, "Steam separation enhanced reactions: Review and outlook", Chem. Eng. J., 374, 1286-1303 (2019). https://doi.org/10.1016/j.cej.2019.06.031
  3. S. Storsaeter, O. Borg, E. A. Blekkan, and A. Holmen, "Study of the effect of water on Fischer- Tropsch synthesis over supported cobalt catalysts", J. Catal., 231, 405-419 (2005). https://doi.org/10.1016/j.jcat.2005.01.036
  4. D. J. Duvenhage and N. J. Coville, "Deactivation of a precipitated iron Fischer-Tropsch catalyst-A pilot plant study", Appl. Catal. A-Gen., 298, 211- 216 (2006). https://doi.org/10.1016/j.apcata.2005.10.009
  5. T. Chen, Z. Wang, L. Liu, S. Pati, M. H. Wai, and S. Kawi, "Coupling CO2 separation with catalytic reverse water-gas shift reaction via ceramiccarbonate dual-phase membrane reactor", Chem. Eng. J., 379, 122182 (2020).
  6. A. Borgschulte, N. Gallandat, B. Probst, R. Suter, E. Callini, D. Ferri, Y. Arroyo, R. Erni, H. Geerlings, and A. Zuttel, "Sorption enhanced CO2 methanation", Phys. Chem. Chem. Phys., 15, 9620- 9625 (2013). https://doi.org/10.1039/c3cp51408k
  7. S. Walspurger, G. D. Elzinga, J. W. Dijkstra, M. Saric, and W. G. Haije, "Sorption enhanced methanation for substitute natural gas production: Experimental results and thermodynamic considerations", Chem. Eng. J., 242, 379-386 (2014). https://doi.org/10.1016/j.cej.2013.12.045
  8. M. Ghodhbene, F. Bougie, P. Fongarland, and M. C. Iliuta, "Hydrophilic zeolite sorbents for in-situ water removal in high temperature processes", Can. J. Chem. Eng., 95, 1842-1849 (2017). https://doi.org/10.1002/cjce.22877
  9. W. Huang, X. Zhang, A.-C. Yang, E. D. Goodman, K.-C. Kao, and M. Cargnello, "Enhanced catalytic activity for methane combustion through in situ water sorption", ACS Catal., 10, 8157-8167 (2020). https://doi.org/10.1021/acscatal.0c02087
  10. M. Post, A. Van't Hoog, J. Minderhoud, and S. Sie, "Diffusion limitations in fischer-tropsch catalysts", AIChE J., 35, 1107-1114 (1989). https://doi.org/10.1002/aic.690350706
  11. C. A. Chanenchuk, I. C. Yates, and C. N. Satterfield, "The Fischer-Tropsch synthesis with a mechanical mixture of a cobalt catalyst and a copper-based water gas shift catalyst", Energy Fuels, 5, 847-855 (1991). https://doi.org/10.1021/ef00030a012
  12. T. Ogawa, N. Inoue, T. Shikada, and Y. Ohno, "Direct dimethyl ether synthesis", J. Nat. Gas Chem., 12, 219-227 (2003).
  13. R. Espinoza, E. Du Toit, J. Santamaria, M. Menendez, J. Coronas, and S. Irusta, "Use of membranes in Fischer-Tropsch reactors", Studies in Surface Science and Catalysis, pp. 389-394, Elsevier, Granada, Spain (2000).
  14. N. Diban, A. T. Aguayo, J. Bilbao, A. Urtiaga, and I. Ortiz, "Membrane reactors for in situ water removal: a review of applications", Ind. Eng. Chem. Res., 52, 10342-10354 (2013). https://doi.org/10.1021/ie3029625
  15. N. Diban, A. M. Urtiaga, I. Ortiz, J. Erena, J. Bilbao, and A. T. Aguayo, "Influence of the membrane properties on the catalytic production of dimethyl ether with in situ water removal for the successful capture of CO2", Chem. Eng. J., 234, 140-148 (2013). https://doi.org/10.1016/j.cej.2013.08.062
  16. J. Gorbe, J. Lasobras, E. Frances, J. Herguido, M. Menendez, I. Kumakiri, and H. Kita, "Preliminary study on the feasibility of using a zeolite A membrane in a membrane reactor for methanol production", Sep. Purif. Technol., 200, 164-168 (2018). https://doi.org/10.1016/j.seppur.2018.02.036
  17. S. K. Hubadillah, Z. S. Tai, M. H. D. Othman, Z. Harun, M. R. Jamalludin, M. A. Rahman, J. Jaafar, and A. F. Ismail, "Hydrophobic ceramic membrane for membrane distillation: A mini review on preparation, characterization, and applications", Sep. Purif. Technol., 217, 71-84 (2019). https://doi.org/10.1016/j.seppur.2019.02.014
  18. W. J. Koros and G. Fleming, "Membrane-based gas separation", J. Membr. Sci., 83, 1-80 (1993). https://doi.org/10.1016/0376-7388(93)80013-N
  19. P. Pandey and R. Chauhan, "Membranes for gas separation", Prog. Polym. Sci., 26, 853-893 (2001). https://doi.org/10.1016/S0079-6700(01)00009-0
  20. F. Gallucci, A. Basile, and F. I. Hai, "IntroductionA review of membrane reactors", pp. 1-61, John Wiley & Sons, United Kingdom (2011).
  21. X. Dong, Z. Liu, W. Jin, and N. Xu, "A self-catalytic mixed-conducting membrane reactor for effective production of hydrogen from methane", J. Power Sources, 185, 1340-1347 (2008). https://doi.org/10.1016/j.jpowsour.2008.08.066
  22. D. Fritsch and G. Bengtson, "Catalytic polymer membranes for high temperature hydrogenation of viscous liquids", Adv. Eng. Mater., 8, 386-389 (2006). https://doi.org/10.1002/adem.200600019
  23. S. Bhatia, C. Y. Thien, and A. R. Mohamed, "Oxidative coupling of methane (OCM) in a catalytic membrane reactor and comparison of its performance with other catalytic reactors", Chem. Eng. J., 148, 525-532 (2009). https://doi.org/10.1016/j.cej.2009.01.008
  24. D. Fedosov, A. Smirnov, V. Shkirskiy, T. Voskoboynikov, and I. Ivanova, "Methanol dehydration in NaA zeolite membrane reactor", J. Membr. Sci., 486, 189-194 (2015). https://doi.org/10.1016/j.memsci.2015.03.047
  25. P. T. Ngamou, M. Ivanova, O. Guillon, and W. A. Meulenberg, "High-performance carbon molecular sieve membranes for hydrogen purification and pervaporation dehydration of organic solvents", J. Mater. Chem. A, 7, 7082-7091 (2019). https://doi.org/10.1039/C8TA09504C
  26. H. Sloot, G. Versteeg, C. Smolders, and W. P. M. van Swaaij, "A non-permselective membrane reactor for the selective catalytic reduction of NOx with ammonia", Key Eng. Mater., 61, 261-266 (1992). https://doi.org/10.4028/www.scientific.net/KEM.61-62.261
  27. K. Ghasemzadeh, A. Basile, and A. Iulianelli, "Progress in modeling of silica-based membranes and membrane reactors for hydrogen production and purification", ChemEngineering, 3, 2 (2019).
  28. U. Balachandran, J. Dusek, P. Maiya, B. Ma, R. Mieville, M. Kleefisch, and C. Udovich, "Ceramic membrane reactor for converting methane to syngas", Catal. Today, 36, 265-272 (1997). https://doi.org/10.1016/S0920-5861(96)00229-5
  29. H. J. Sloot, "A non-permselective membrane reactor for catalytic gas phase reactions", Ph.D. Dissertation, Univ. of Twente, Enschede, Netherlands (1992).
  30. S.-T. Hwang, "Inorganic membranes and membrane reactors", Korean J. Chem. Eng., 18, 775- 787 (2001). https://doi.org/10.1007/BF02705597
  31. S. Pati, N. Dewangan, Z. Wang, A. Jangam, and S. Kawi, "Nanoporous zeolite-A sheltered Pd-hollow fiber catalytic membrane reactor for propane dehydrogenation", ACS Appl. Nano Mater., 3, 6675-6683 (2020). https://doi.org/10.1021/acsanm.0c01131
  32. S. Matteucci, Y. Yampolskii, B. D. Freeman, and I. Pinnau, "Transport of gases and vapors in glassy and rubbery polymers", Materials Science of Membranes for Gas and Vapor Separation, pp. 1-47, John Wiley & sons, United Kingdom (2006).
  33. Z. Zhang, W. Zhou, T. Wang, Z. Gu, Y. Zhu, Z. Liu, Z. Wu, G. Zhang, and W. Jin, "Ion-Conducting Ceramic Membrane Reactors for the Conversion of Chemicals", Membranes, 13, 621 (2023).
  34. X. Tan and K. Li, "Design of mixed conducting ceramic membranes/reactors for the partial oxidation of methane to syngas", AIChE J., 55, 2675- 2685 (2009). https://doi.org/10.1002/aic.11873
  35. S. A. S. Rezai, J. Lindmark, C. Andersson, F. Jareman, K. Moller, and J. Hedlund, "Water/hydrogen/hexane multicomponent selectivity of thin MFI membranes with different Si/Al ratios", Microporous Mesoporous Mater., 108, 136-142 (2008). https://doi.org/10.1016/j.micromeso.2007.04.002
  36. K. Sato, K. Sugimoto, Y. Sekine, M. Takada, M. Matsukata, and T. Nakane, "Application of FAU-type zeolite membranes to vapor/gas separation under high pressure and high temperature up to 5 MPa and 180 ℃", Microporous Mesoporous Mater., 101, 312-318 (2007). https://doi.org/10.1016/j.micromeso.2006.12.021
  37. H. Li, C. Qiu, S. Ren, Q. Dong, S. Zhang, F. Zhou, X. Liang, J. Wang, S. Li, and M. Yu, "Na+-gated water-conducting nanochannels for boosting CO2 conversion to liquid fuels", Science, 367, 667-671 (2020). https://doi.org/10.1126/science.aaz6053
  38. K. Sawamura, T. Izumi, K. Kawasaki, S. Daikohara, T. Ohsuna, M. Takada, Y. Sekine, E. Kikuchi, and M. Matsukata, "Reverse-selective microporous membrane for gas separation", Chem Asian J., 4, 1070-1077 (2009). https://doi.org/10.1002/asia.200900048
  39. R. Raso, M. Tovar, J. Lasobras, J. Herguido, I. Kumakiri, S. Araki, and M. Menendez, "Zeolite membranes: Comparison in the separation of H2O/H2/CO2 mixtures and test of a reactor for CO2 hydrogenation to methanol", Catal. Today, 364, 270-275 (2021). https://doi.org/10.1016/j.cattod.2020.03.014
  40. S. M. Lee, N. Xu, J. R. Grace, A. Li, C. J. Lim, S. S. Kim, F. Fotovat, A. Schaadt, and R. J. White, "Structure, stability and permeation properties of NaA zeolite membranes for H2O/H2 and CH3OH/H2 separations", J. Eur. Ceram. Soc., 38, 211-219 (2018). https://doi.org/10.1016/j.jeurceramsoc.2017.08.012
  41. K.-I. Sawamura, T. Shirai, M. Takada, Y. Sekine, E. Kikuchi, and M. Matsukata, "Selective permeation and separation of steam from water-methanol-hydrogen gas mixtures through mordenite membrane", Catal. Today, 132, 182-187 (2008). https://doi.org/10.1016/j.cattod.2007.12.005
  42. W. Zhu, L. Gora, A. Van den Berg, F. Kapteijn, J. Jansen, and J. Moulijn, "Water vapour separation from permanent gases by a zeolite-4A membrane", J. Membr. Sci., 253, 57-66 (2005). https://doi.org/10.1016/j.memsci.2004.12.039
  43. K. Aoki, K. Kusakabe, and S. Morooka, "Separation of gases with an A-type zeolite membrane", Ind. Eng. Chem. Res., 39, 2245-2251 (2000). https://doi.org/10.1021/ie990902c
  44. M. Lafleur, F. Bougie, N. Guilhaume, F. Larachi, P. Fongarland, and M. C. Iliuta, "Development of a water-selective zeolite composite membrane by a new pore-plugging technique", Microporous Mesoporous Mater., 237, 49-59 (2017). https://doi.org/10.1016/j.micromeso.2016.09.004
  45. N. Wang, Y. Liu, A. Huang, and J. Caro, "Hydrophilic SOD and LTA membranes for membrane-supported methanol, dimethylether and dimethylcarbonate synthesis", Microporous Mesoporous Mater., 207, 33-38 (2015). https://doi.org/10.1016/j.micromeso.2014.12.028
  46. E. Sjoberg, L. Sandstrom, and J. Hedlund, "Membrane processes for effective methanol synthesis in the forest based biorefinery", Catal. Today, 156, 87-92 (2010). https://doi.org/10.1016/j.cattod.2010.02.037
  47. H. Hatori, H. Takagi, and Y. Yamada, "Gas separation properties of molecular sieving carbon membranes with nanopore channels", Carbon, 42, 1169-1173 (2004). https://doi.org/10.1016/j.carbon.2003.12.051
  48. G.A. Sznejer, I. Efremenko, and M. Sheintuch, "Carbon membranes for high temperature gas separations: experiment and theory", AIChE J., 50, 596-610 (2004). https://doi.org/10.1002/aic.10054
  49. S. Poto, A. Aguirre, F. Huigh, M. A. Llosa-Tanco, D. A. Pacheco-Tanaka, F. Gallucci, and M. F. N. d'Angelo, "Carbon molecular sieve membranes for water separation in CO2 hydrogenation reactions: Effect of the carbonization temperature", J. Membr. Sci., 677, 121613 (2023).
  50. L. M. Robeson, "Polymer membranes for gas separation", Curr. Opin. Solid State Mater. Sci., 4, 549-552 (1999). https://doi.org/10.1016/S1359-0286(00)00014-0
  51. R. S. K. Valappil, N. Ghasem, and M. AlMarzouqi, "Current and future trends in polymer membrane-based gas separation technology: A comprehensive review", J. Ind. Eng. Chem., 98, 103-129 (2021). https://doi.org/10.1016/j.jiec.2021.03.030
  52. L. M. Robeson, Q. Liu, B. D. Freeman, and D. R. Paul, "Comparison of transport properties of rubbery and glassy polymers and the relevance to the upper bound relationship", J. Membr. Sci., 476, 421-431 (2015). https://doi.org/10.1016/j.memsci.2014.11.058
  53. S. Korkmaz, Y. Salt, and S. Dincer, "Esterification of acetic acid and isobutanol in a pervaporation membrane reactor using different membranes, Industrial & engineering chemistry research", 50, 11657-11666 (2011). https://doi.org/10.1021/ie200086h
  54. A. Saravanan, D.-V. N. Vo, S. Jeevanantham, V. Bhuvaneswari, V. A. Narayanan, P. Yaashikaa, S. Swetha, and B. Reshma, "A comprehensive review on different approaches for CO2 utilization and conversion pathways", Chem. Eng. Sci., 236, 116515 (2021).
  55. C.-H. Huang and C.-S. Tan, "A review: CO2 utilization", Aerosol Air Qual. Res., 14, 480-499 (2014). https://doi.org/10.4209/aaqr.2013.10.0326
  56. A. Rafiee, K. R. Khalilpour, D. Milani, M. Panahi, "Trends in CO2 conversion and utilization: A review from process systems perspective", J. Environ. Chem. Eng., 6, 5771-5794 (2018). https://doi.org/10.1016/j.jece.2018.08.065
  57. A. Leszczynska, J. Njuguna, K. Pielichowski, and J. Banerjee, "Polymer/montmorillonite nanocomposites with improved thermal properties: Part I. Factors influencing thermal stability and mechanisms of thermal stability improvement", Thermochim. Acta, 453, 75-96 (2007). https://doi.org/10.1016/j.tca.2006.11.002
  58. Z. Dobkowski, "Thermal analysis techniques for characterization of polymer materials", Polym. Degrad. Stab., 91, 488-493 (2006). https://doi.org/10.1016/j.polymdegradstab.2005.01.051
  59. J. Lee, H.-G. Park, M.-H. Hyeon, B.-G. Kim, S. K. Kim, and S.-Y. Moon, "Low-temperature CO2 hydrogenation overcoming equilibrium limitations with polyimide hollow fiber membrane reactor", Chem. Eng. J., 403, 126457 (2021).
  60. S. Escorihuela, C. Cerda-Moreno, F. Weigelt, S. Remiro-Buenamanana, S. Escolastico, A. Tena, S. Shishatskiy, T. Brinkmann, A. Chica, and J. M. Serra, "Intensification of catalytic CO2 methanation mediated by in-situ water removal through a hightemperature polymeric thin-film composite membrane", J. CO2 Util., 55, 101813 (2022).
  61. A. Tena, S. Rangou, S. Shishatskiy, V. Filiz, and V. Abetz, "Claisen thermally rearranged (CTR) polymers", Sci. Adv., 2, e1501859 (2016).
  62. W. H. Lee, J. G. Seong, X. Hu, and Y. M. Lee, "Recent progress in microporous polymers from thermally rearranged polymers and polymers of intrinsic microporosity for membrane gas separation: pushing performance limits and revisiting trade-off lines", J. Polym. Sci., 58, 2450-2466 (2020). https://doi.org/10.1002/pol.20200110
  63. S. Bandehali, A. E. Amooghin, H. Sanaeepur, R. Ahmadi, A. Fuoco, J. C. Jansen, and S. Shirazian, "Polymers of intrinsic microporosity and thermally rearranged polymer membranes for highly efficient gas separation", Sep. Purif. Technol., 278, 119513 (2021).
  64. M.-H. Hyeon, H.-G. Park, J. Lee, C.-I. Kong, E.-Y. Kim, J. H. Kim, S.-Y. Moon, and S. K. Kim, "Equilibrium shift, poisoning prevention, and selectivity enhancement in catalysis via dehydration of polymeric membranes", Nat. Commun., 14, 1673 (2023).