블루수소 생산을 위한 이산화탄소 포집용 2단 분리막 공정 최적화 연구

박 진 우*,** · 이 준 협* · 허 소 연* · 여 정 구* · 심 재 훈*** · 임 진 혁*** · 이 충 섭*** · 김 진 국** · 이 정 현*,[†]

*한국에너지기술연구원 에너지저장연구단, **한양대학교 화학공학과, ***㈜에어레인 (2023년 11월 3일 접수, 2023년 11월 20일 채택)

Membrane-Based Carbon Dioxide Separation Process for Blue Hydrogen Production

Jin Woo Park^{*,**}, Joonhyub Lee^{*}, Soyeon Heo^{*}, Jeong-Gu Yeo^{*}, Jaehoon Shim^{***}, Jinhyuk Yim^{***}, Chungseop Lee^{*,*}, Jin Kuk Kim^{**}, and Jung Hyun Lee^{*,†}

*Energy Storage Department, Korea Institute of Energy Research, Daejeon 34129, Korea **Chemical Engineering Department, Hanyang University, Seoul 04763, Korea ***Airrane Co. Ltd., Chungcheongbuk-do 28121, Korea (Received November 3, 2023, Accepted November 20, 2023)

요 약: 본 연구에서는 중공사형 이산화탄소 분리막 모듈을 사용하여 수소개질기 배가스로부터 이산화탄소 포집을 목적 으로 한 분리막 공정 최적화 연구를 진행하였다. 랩스케일의 소형 분리막 모듈을 사용하여 혼합기체를 대상으로 이산화탄소 순도 90% 및 회수율 90%을 달성하는 2단 공정 조건을 도출하였다. 막 면적이 정해진 모듈의 분리막 공정에서는 스테이지-컷, 주입부 및 투과부 압력에 따라서 포집 순도 및 회수율이 모두 다르게 나타나기 때문에 운전 조건에 대한 최적화가 필수적이 다. 본 연구에서는 다양한 운전 조건에서 1단 분리막에서 보이는 공정 포집 효율의 한계를 확인하고, 높은 순도와 회수율을 동시에 달성하기 위한 2단 회수 공정을 최적화하였다.

Abstract: The membrane separation process for carbon dioxide capture from hydrogen reformer exhaust gas has been developed. Using a commercial membrane module, a multi-stage process was developed to achieve 90% of carbon dioxide purity and 90% of recovery rate for ternary mixed gas. Even if a membrane module with being well-known properties such as material selectivity and permeability, the process performance of purity and recovery widely varies depending on the stage-cut, the pressure at feed and permeate side. In this study, we verify the limits of capture efficiency at single-stage membrane process under various operating conditions and optimized the two-stage recovery process to simultaneously achieve high purity and recovery rate.

Keywords: multi-stage process, operation factor, process optimization, carbon dioxide, blue hydrogen

1. 서 론

국내 수소 경제 활성화를 위하여 정부에서 배포한 수 소경제 활성화 로드맵이 발표된 이후, 다양한 수소 생 산 및 활용 관련 기술에 대한 개발 또한 급격히 늘어나 고 있다. 국내 분산형 수소 생산은 2021년 4월 경남 창 원에서 연간 330톤의 생산량을 갖는 소규모 생산기지 를 시작으로 대전 낭월동의 수소충전소를 포함하여 2023년 7월 기준으로 2050년까지 국내 연간 27.9백만 톤까지 생산량을 확대해 갈 계획이다[1]. 특히, 2030년 까지 수소모빌리티 63만대 보급 정책을 필두로, 수소 모빌리티 경제 활성화에 힘입어 수소충전소는 2040년 까지 1200기로 늘어날 예정이며, 추후 규모 분산형 수 소개질기 설치는 더욱 늘어날 전망이다[2].

가장 시장 근접성이 높은 수소 생산 기술은 천연가스 와 수증기 개질을 통하여 생산되는 SMR (steam meth-

[†]Corresponding author(e-mail: junghyun279@kier.re.kr; http://orcid.org/0000-0001-5767-1444)

ane reforming) 방법인데, 메탄과 물을 고온 조건에서 촉매와 함께 반응시켜 수소와 이산화탄소로 전환시켜 수소를 얻기 때문에 그 과정에서 발생되는 온실가스에 대한 처리 문제도 자연스레 대두되고 있다[3,4]. 메탄 개질 중 고온, 고압의 조건을 발생시키기 위하여 발생 하는 에너지를 모두 포함하면, 수소 1 kg를 생산하는 동안 약 11 kg의 이산화탄소가 배출된다고 알려져 있 다[5]. 따라서 정부에서는 2024년 청정수소인증제도를 시행을 계획하여 수소 생산 시 발생하는 온실가스 배출 을 최소화하는 노력을 기울이고 있다[6,7].

IAEGHG에서 발표한 상용급 수소 개질기로부터의 배가스는 온도 136 °C, 압력 0.02 MPa로 CO₂를 약 21% 포함하고 있으며, 각각의 기체의 온도 및 조성은 Table 1과 같다. 이는 대규모 상용 개질기 규모를 기반 으로 산출된 결과로, 통상적으로 분산형 수소생산을 위 한 개질기에서 배출되는 이산화탄소의 농도는 규모뿐 만 아니라 제조사마다 약간씩 다를 것이라 사료된다[8]. 배가스로부터 이산화탄소를 포집하는 기술은 아민 흡수법(amine scrubbing), 흡착법(pressure swing adsorption, PSA), 분리막법 등 다양한 기술이 거론되고 있으며, 수소 생산 규모 및 배가스의 컨디션 등에 따라 각 사용처에 맞는 포집 공정이 검토될 수 있다[9]. 특히 아민 흡수법과 같이 발전소 연소배가스 대상으로 한 대 형 실증 레코드가 존재하고, 기술성숙도가 높은 기술의 경우에는 개질기 배가스에서 적용 가능할 것이라는 기 대가 크다[10]. 하지만 수소차 충전소 등 주로 생활접근 성이 높고 도심 주변에 분포하고 있는 소규모의 분산형 개질기의 경우, 아민 화합물에 대한 우려로 환경문제 또는 주민수용성에 대한 이슈가 있어 상대적으로 설치 가 쉽고, 컴팩트한 분리막 공정이 블루수소를 위한 기 술 대안으로 검토될 수 있다.

막분리 기술은 기존 분리 기술에 비해 낮은 에너지 소모량, 작은 설치 공간, 운전과 규모 확장의 용이함, 환경 친화적인 장점들을 가지고 있으나, 투과도 및 선 택도 등 분리막 소재에 대한 성능 한계 및 대형 상용급 기체분리막 모듈화 기술 등에 대한 이슈가 대두되며 해 당 분야에 대한 기술의 개발이 꾸준히 진행되고 있다 [11-13]. 구체적으로는, 투과도와 선택도의 역상관관계 (trade-off)에 의한 분리막 기술의 한계로 고선택성, 고 투과성 분리막 소재 개발 및 이를 활용하여 포집 비용 효율화를 위한 공정 최적화 기술이 분리막 기술의 시장 진출을 위한 요인이 되고 있다.

Table 1. Flue Gas Composition of H	Hydrogen Reformer[8]
------------------------------------	----------------------

	Wet basis	Dry basis
CO ₂ (mol %)	21.2	25.6
O ₂ (mol %)	1.0	1.2
N ₂ (mol %)	60.8	73.2
H ₂ O (mol %)	16.9	-

본 논문에서는 상용 분리막 모듈을 사용하여 이산화 탄소를 포집하기 위한 분리막 공정 최적화 연구를 진행 하였다. 정해진 막모듈을 사용하여 수소개질기 배가스 에서 발생하는 모사 혼합기체로부터 90%의 이산화탄소 를 농도 90% 이상의 상태로 분리할 수 있는 공정 조건 을 찾는 것을 본 연구의 목적으로 하였다. 또한, 공정의 운전 조건 변화와 그에 따른 CO₂ 순도, 회수율의 변화 를 고찰함으로써 각 변수 간의 상호작용을 보고자 하였 으며 이를 위하여 상용 중공사 분리막을 사용하여 온 도, 압력의 변수를 변경하며 실험을 진행하였다.

2. 실 험

본 연구에 사용된 모듈은 ㈜에어레인의 소형 중공사 분리막(MNH-1006)을 구입하여 사용하였다. 주입 가스 의 유량 조절은 MFC (Atovac, GMC1200z)를 사용하였 고 각 인가 압력에 따른 유량 보정을 수행 후 측정하였 으며, 기체의 유량은 Sensydine사의 standard flow cell 모델을 사용하여 측정하였다. 주입부와 잔여부에서의 압력 조절은 TESCOM사의 역압조절기(back pressure regulator, BPR)를 사용하였고, 투과부에서의 압력은 Ulvac사의 진공펌프와 니들밸브(UNILOK)를 연결하여 조절하였으며, 각 기체 라인에서의 압력은 Siemens사의 SITRANS P DS III 모델을 사용하여 측정하였다. 기체 가압을 위한 압축기는 KNF사의 N 035AN.18 모델을 사용하였다. 모든 분리막 공정 실험은 상온(23 ± 2 °C) 에서 수행되었다.

투과된 가스의 조성 분석은 열전도도 검출기(thermal conductivity detector, TCD)를 사용한 Aglient 사의 가 스크로마토그래피(gas chromatography, GC) 7890B 모 델을 사용하였고, 각각의 농도별로 검량선(calibration curve)을 생성하여 결정계수 0.998 이상을 확인하였다. 이 때 사용된 각각의 표준기체는 Table 2와 같으며, 생 성된 검량선을 기준으로 모든 혼합기체의 조성을 분석 하였다. 실험에 사용된 모든 단일기체 및 CO₂/O₂/N₂

	CO ₂ (mol%)	O ₂ (mol%)	N ₂ (mol%)
No. 1	20	10	70
No. 2	50	5	45
No. 3	80	3	17
No. 4	90	1	9
No. 5	99	0.5	0.5
No. 6	99	0	1

Table 2. Standard Mixed Gas for GC Analysis

(20/5/75, mol/mol) 혼합기체는 ㈜스페셜가스에서 구입하였다.

기체의 투과도 P_i 는 아래 식을 사용하여 계산하였다. 순수기체 투과도는 dead-end 방법으로 측정하였으며, 혼합기체 투과도는 연속 공정을 운전하며 투과부에서 나오는 유량 및 조성 분석을 통하여 측정하였다.

$$P_i = \frac{Q_i}{(\Delta p_i)A} \tag{1}$$

여기서 *Q*_i는 표준조건(STP)에서 성분 *i*의 유량을, △*p_i* 는 주입부와 투과부의 기체의 분압차를, *A*는 분리막의 면적을 의미한다.

선택도(α)는 이산화탄소 기체 투과도에 대한 산소 또는 질소 기체의 투과도 비로 각각 계산하였다.

$$\alpha(CO_2/O_2) = \frac{P_{CO_2}}{P_{O_2}}, \ \alpha(CO_2/N_2) = \frac{P_{CO_2}}{P_{N_2}}$$
(2)

스테이지-컷(stage-cut, θ)은 분리공정에 공급되는 전 체 기체의 유량에 대한 투과 부에서 생산되는 기체 유 량의 비를 의미하며, CO₂ 회수율은 분리 대상인 이산 화탄소 공급량 대비 투과부에서 포집된 CO₂ 유량의 비 로 정의하였다.

Stage - cut(
$$\theta$$
) = $\frac{Q_{perm}}{Q_{feed}}$ (3)

$$CO_2 \operatorname{recovery} = \frac{Q_{CO_2, perm}}{Q_{CO_2, feed}}$$
(4)

Fig. 1. P&ID of (a) 1-stage, (b) 2-stage without recycle and (c) 2-stage with recycle process.

여기서 Q_{CO2,feed} 및 Q_{CO2,perm}는 각각 주입부 및 투과부 에서의 유량을 의미하며, Q_{CO2},feed 및 Q_{CO2},perm는 각각 주입부 및 투과부에서의 이산화탄소의 유량을 의미한다. 본 연구에서 수행된 1단공정, 2단공정, 2단 회수공정 의 P&ID를 각각 Fig. 1에 나타내었다. 분리막 모듈의 공 정 운전 요인에 대한 효과를 알아보기 위하여 주어진 분 리막에 대한 유량, 압력 변수에 따른 1단 분리막에서의 최종 CO2 순도, 회수율을 평가하였다. 실제 분리막 공정 의 공정운전비용(OPEX)의 대부분을 차지하는 압력 구동 비용은 압력비가 너무 높으면 분리막 포집 공정에서의 포집비용이 지나치게 높아질 것을 고려하여 주입부에서 의 기체압력은 1 bar에서 3 bar로 제한하였고, 투과압력 진공펌프를 2단까지 사용한다고 가정하여 0.1 bar 이상 0.3 bar 이하로 제한하였다. 또한 MFC로 제어 가능한 주입부의 기체유량은 막 면적과 스테이지-컷을 고려하여 0.1~0.9 Nm³/h 조건에서 실험을 진행하였다. 주입가스의 조성은 IEAGHG Report의 수소개질기에서 발생하는 연도가스의 조성을 참고하여 참고수치보다 더 보수적 인 조건인 CO₂ 20%, O₂ 5%, N₂ 75%로 설정하였다.

3. 결 과

먼저 분리막 모듈의 고유의 투과선택 특성을 확인하 기 위하여 주입부와 투과부 압력을 각각 4 bar,a, 1 bar,a로 설정하고 온도 20~ - 20 °C에서 각 기체에 대 한 투과도 및 선택도를 투과도를 Fig. 2에 나타내었다. 상온에서의 이산화탄소 투과도는 658 GPU를 보였으 며, 산소 및 질소 투과도는 112, 16 GPU로 이산화탄소/ 산소 선택도는 5.9, 이산화탄소/질소 선택도는 40.3로 계산되었다. 투과도에 대한 활성화 에너지는 각 그래프 기울기에 기체상수의 절대값으로 계산 가능하며, 이산 화탄소, 산소, 질소에 대하여 각각 4.62, 11.14, 12.91 kJ/mol으로 계산되어 학계 발표된 문헌과 비슷한 경향 성을 보인다는 것을 확인하였다[14-17]. 상대적으로 이 산화탄소는 다른 기체에 비하여 낮은 활성화에너지를 보이며 온도 의존성이 적다는 것을 확인할 수 있었으 며, 이는 온도가 낮아질수록 질소 또는 산소의 투과도 가 낮아지는 비율이 이산화탄소의 투과도가 낮아지는 비율보다 더 높기 때문에 선택도가 높아진다는 것을 FIg. 2(b)에서도 확인할 수 있다.

혼합기체를 대상으로 한 막모듈의 성능을 살펴보기 위하여 먼저 주입부 3.0 bar, 투과부 0.2 bar 압력 조건 하에서 주입유량에 따른 투과도 및 선택도를 측정하였 고, 이를 Fig. 3(a)에 나타내었다. 주입 유량이 0.1 Nm³/h에서 0.9 Nm³/h로 증가함에 따라서 스테이지-컷 범위는 0.67에서 0.18로 줄어들면서 투과도와 선택도는 각각 스테이지-컷과 역상관관계를 보였다. 이 때 계산 된 이산화탄소의 투과도는 42 GPU에서 270 GPU로 증 가하였으며, CO₂/N₂ 선택도는 1.8에서 14.2로 증가하였 다. 이는 같은 분리막 모듈이더라도 분리막이 감당하는 스테이지-컷에 따라 선택도와 투과도가 다르게 도출된 다는 것을 알 수 있다.

분리막의 투과도는 고분자 소재 및 모듈에서 나타나 는 고유한 특성이나, 이를 혼합기체를 대상으로 연속 공정에서 운전하려면 스테이지-컷, 주입부/투과부 압력 비 등에 따라 선택도와 투과도가 극명히 차이가 난다. 따라서 분리막의 혼합기체를 사용하여 분리막 공정의 성능을 판단하려면 분리막 고유의 투과도 및 선택도보 다 공정의 주입부와 투과부에서 얻어지는 이산화탄소 의 순도와 회수율에 집중하여 해석하는 것이 필요하다. 같은 조건에서 스테이지-컷에 대한 투과부에서의 순 도 및 회수율 그래프를 Fig. 3(b)에 나타내었다. 스테이

Fig. 2. (a) The single gas permeance of CO_2 , O_2 and N_2 and (b) CO_2/O_2 and CO_2/N_2 selectivity of Polysulfone hollow fiber membrane.

Fig. 3. (a) The CO_2 permeance and selectivity varying feed flow rate at 0.1~0.9 Nm³/h and (b) The CO_2 purity, recovery as stage-cut. (pressure feed/permeate: 3/0.2 bar).

지-컷이 0.18에서 0.67로 커지는 동안 순도는 71.9%에 서 30%로 감소하였으며, 회수율은 65%에서 100%로 증가하며 역상관관계를 뚜렷하게 관찰할 수 있었다. 높 은 스테이지-컷을 보이는 낮은 주입부 유량 조건에서는 주입부 대비 투과부에서의 유량이 매우 크기 때문에 분 리막 모듈에서 이산화탄소를 거를 수 없이 상대적으로 많은 유량이 투과부로 빠져나와서 결과적으로 포집순 도가 낮아지고, 주입유량을 높여 스테이지-컷을 낮추면 주입부에 들어간 유량 대비 투과부로 빠져나오는 기체 의 유량이 상대적으로 적기 때문에 분리막 모듈 내의 분리막 계면에서 이산화탄소만 선택적으로 투과시킬 수 있는 여지가 많은 동시에 잔여부 쪽으로 흐르며 심 화되는 모듈 내 분극현상(concentration polarization)도 상대적으로 적기 때문에 높은 순도를 얻을 수 있다. 하 지만 스테이지-컷이 낮은 운전 조건에서는 잔여부로 버 려지는 이산화탄소의 양이 많기 때문에 높은 회수율을 기대하기 어렵다.

1단 공정에서 공정의 순도 및 회수율은 스테이지-컷 뿐만 아니라 주입부와 투과부 각각의 압력에 따라서도 달라질 수 있다. 주입부에서 컴프레서로 높은 압력을 설정할수록, 투과부에서 진공도를 높여 압력이 낮아질 수록 기체의 투과 거동을 심화시킬 수 있는 압력 차이 가 커지기 때문에 더 높은 분리막 공정 효율을 도출할 수 있는 것은 당연하다. 하지만 주입부에서 혼합기체의 주입유량을 일정하게 공급하면서 분리막에 인가되는 압력비율을 지나치게 높이면 분리막 공정운전비용도 비효율적으로 상승하는 동시에, 앞에서 설명한 스테이 지-컷이 지나치게 높아져 포집 순도가 낮아질 수 있기 때문에 적당한 운전 압력 또한 최적화가 필요하다. Fig. 4에서 각각 주입부 압력을 1, 3, 5 bar 조건에서 투과부 압력에 따른 분리막 공정의 순도/회수율 결과를 나타내 었다. 주입부 1 bar 조건에서 투과 압력의 진공도가 세 게 인가되어 압력이 낮아질수록 공정 전체의 CO₂ 순도, 회수율이 모두 증가하는 결과를 보였으며, 이 때의 주 입부에 압력이 인가되지 않았기 때문에 스테이지-컷은 0.09~0.17 범위로 상대적으로 낮은 값을 보였다. 때문 에 진공도가 높아지면서 순도 및 회수율 향상도가 비교 적 잘 드러나게 되었고, 투과부 압력 0.1 bar를 보이며 압력비 10일 때에는 순도 68,5%, 회수율 57.7%을 보이 며 1단 공정에서는 가장 높은 순도를 보였다. 주입압력 이 3 bar로 인가되면 회수율이 급격히 늘어 모든 투과 부 압력에 크게 구애받지 않으며 90% 이상의 범위를 보였으며, 순도는 54~55%를 유지하는 것을 관찰할 수 있었다. 이때의 스테이지-컷은 0.33~0.36 수준을 유지하

Fig. 4. Process performance in CO_2 purity, recovery and stage-cut under varying permeate pressure at feed pressure of (a) 1 bar, (b) 3 bar and (c) 5 bar. Feed flow rate is 0.3 Nm³/h.

였으며, 이는 고회수율을 목적으로 한 분리막 공정에 적합한 운전 조건이라고 할 수 있다. 주입압력이 5 bar 로 비교적 높은 압력을 인가하게 되면 회수율이 99%을 넘어가면서 순도는 44%로 하락하게 된다. 이때의 스테 이지-컷은 0.45로 높은 편이며, 높은 회수율로 유추하였 을 때 잔여부 쪽에서의 이산화탄소 분압 손실로 인한 분극현상 때문에 순도 저하 현상이 일어났다고 판단된다.

단일 분리막 공정을 통해 얻은 결과는 순도 30~70%, 회수율 60~100%의 범위에서 한계를 보였다. 대부분의 경우에서 순도와 회수율은 서로 역상관관계를 보이며 높은 순도와 높은 회수율을 동시에 달성하기에는 1단 분리막 공정으로 불가능하였다. 따라서 순도 및 회수율 동시 향상을 위해 분리막을 연결하여 Fig. 1(b)와 같이 2단 분리막 공정을 구성하였다. 2단 분리막 공정 구성 에서는 1단에서의 투과부 라인이 2단에서의 주입부에 연결되어 전체 공정에서의 순도를 높일 수 있는 방법으 로 고안하였다. 2단 분리막 공정의 1단에서 압력 조건 은 순도 손실이 적으면서 회수율 성능이 95%로 비교적 우수했던 주입 압력 3.0 bar, 투과 압력 0.2 bar의 조건 을 설정하였다. 또한, 이 조건에서 스테이지-컷이 0.3임 을 고려하여, 2단 분리막의 막 면적은 1단의 1/3 수준 으로 적용하였다.

이렇게 구성된 2단 공정의 운전 결과를 Fig. 5에 나 타내었다. 1단에서는 앞서 발표한 Fig. 4(b)의 결과와 비슷한 순도는 58%, 회수율은 96%의 수준을 보여 큰 오차 없이 비슷한 분리막 성능을 유지하였다. 1단에서 투과한 이산화탄소 58%의 혼합기체를 그대로 2단 공정 에 투입하였으며, 최종적으로 2단 투과부에서 이산화탄 소 순도가 90%, 회수율 72%를 달성하였다. 이때의 혼 합기체에 대한 이산화탄소 투과도는 1단에서의 118 GPU, 2단에서의 투과도는 183 GPU로 계산되었다.

회수율 관점에서, 단순 2단공정에서 1단(stage 1)의 회수율은 96%로 높은 수준을 보였으나, 2단(stage 2)에 서는 75%의 회수율을 보여 이산화탄소의 회수율이 최 종적으로 71.9%를 보였다. 2단 잔여부에서 버려지는 이산화탄소의 양이 1단에서의 그것에 비하여 6배에 달 하여, 최종 회수율 향상을 위해서는 2단 잔여부의 라인 을 1단의 주입부와 연결하여 회수하는 공정을 고안하였 다. 이 경우, 2단 분리막 공정에서의 잔여부에서 이산화 탄소 농도가 28.5%이기 때문에 20%의 초기 주입기체 와 혼합했을 때 기존의 조성보다 더 높은 이산화탄소 농도가 1단의 주입부로 주입될 수 있다.

이에 회수 2단 공정을 2단 잔여부 라인을 1단 주입부 와 합하여 구성하였고, 그에 대한 운전 결과를 Fig. 6에 나타내었다. 2단 잔여부에서 빠져나가는 기체를 1단 주입부 기체와 혼합하였을 때, 1단 분리막에 주입되는 기체의 조성은 기존 이산화탄소/산소/질소의 비율이 20/5/75에서 22.7/7.2/70.1로 변하였으며, 기존보다 이산화 탄소 주입농도가 약 2.7% 증가함을 알 수 있다. 또한, 2단으로 주입되는 이산화탄소 농도 상승효과로, 1단 투 과부에서의 농도 또한 회수 전의 58%보다 60%로 2% 가량 향상된 효과를 관찰할 수 있었다. 회수율 측면에 서도, 기존 2단 공정에서 버려지던 2단 분리막 잔여부 기체를 회수함으로써 2단 회수공정의 전체 회수율은

Fig. 5. Process Flow Diagram of 2-stage membrane process without recycle.

Fig. 6. Process Flow Diagram of 2-stage membrane process with recycle stream.

90%를 달성할 수 있었다.

단순 2단 공정과 2단 회수 공정에서 각 단에서 계산 된 이산화탄소 투과도와 선택도를 Table 3에 비교하였 다. 먼저, 회수라인을 연결하지 않은 경우 1단의 이산화 탄소 투과도가 117.5 GPU이고, 회수라인을 적용한 경 우 1단의 이산화탄소 투과도가 142.2 GPU인 것으로 보아, 회수라인을 적용하였을 때의 이산화탄소 투과도 가 더 높게 발현된다는 것을 확인할 수 있다. 또한, 선 택도를 비교하였을 때, 1단에서 회수라인의 적용 여부 에 따른 기체선택도는 CO₂/O₂ 선택도가 1.5에서 1.7로 증가하였고, CO₂/N₂의 선택도가 8.3에서 8.4로 미미하 게 증가하였다. 1단에서 같은 압력 조건임에도 불구하 고 2단 회수 공정에서 더 높은 투과도 및 선택도가 발 현된 이유는, 1단의 주입부에 들어가는 혼합기체의 조

	Stage 1		Stage 2			
	CO ₂ permeance	CO ₂ /O ₂ selectivity	CO ₂ /N ₂ selectivity	CO ₂ permeance	CO ₂ /O ₂ selectivity	CO ₂ /N ₂ selectivity
Without recycle	117.5	1.5	8.3	183.2	2.9	17.6
Recycle	142.2	1.7	8.4	227.9	3.3	19.8

Table 3. CO2 Permeance (GPU) and Mixed Gas Selectivity of Each Stage with or without Recycle

성이 이산화탄소 20%에서 22.7%로 포집 대상기체의 초기농도가 더 높고, 유량이 0.25 Nm³/h에서 0.31 Nm³/h로 조금 더 높아서 1단 운전 조건에서의 스테이 지-컷이 0.33에 비하여 0.29로 좀 더 낮은 운전 조건이 기 때문이다.

또한, 2단(stage 2)의 경우에서도 단순2단공정에서 이 산화탄소 투과도가 183.2 GPU에 반해, 회수라인을 적 용하면 227.9 GPU로 회수라인을 적용한 경우 더 높은 투과도가 발현된다는 사실을 확인할 수 있다. 선택도의 경우, 회수라인을 적용하기 전과 후를 비교하였을 때 CO₂/O₂ 선택도는 2.9에서 3.3으로 늘어났고, CO₂/N₂ 선 택도는 17.6에서 19.8로 더 높은 선택도가 발현되는 운 전 조건임을 알 수 있었다. 1단에서 투과되어 2단으로 주입되는 기체의 이산화탄소 농도는 58%임에 비하여, 회수라인을 적용하였을 때 2단의 주입 기체의 농도는 이산화탄소 60.2%로, 더 높은 순도의 이산화탄소가 2 단에 적용되는 것을 알 수 있었다. 또한, 2단의 스테이 지-컷이 0.48에서 회수라인을 적용한 후에 0.46으로 약 간 줄어들었기 때문에 더 주입농도가 높은 조건임에도 불구하고 높은 투과도 및 선택도를 발현시킬 수 있었다.

최종적으로 2단 회수 공정의 경우 각 단에서 더 높은 이산화탄소 투과도 및 선택도를 발현할 수 있는 조건으 로 운전이 가능하였고, 특히 단순 2단공정에서보다 회 수공정을 사용하였을 때 2단에서 더 높은 선택도를 나 타내는 운전 조건을 찾을 수 있었다. 그에 따른 최종 순도, 회수율의 향상 효과로 이어졌고, 최종 순도, 회수 율 90% 이상을 달성하였다.

4. 결 론

본 연구에서는 수소개질기로부터 배출되는 배가스로 부터 분리막 공정을 통해 이산화탄소를 포집하기 위한 분리막 공정을 연구하였다. 상용 분리막을 사용하여 1 단 공정을 대상으로 분리막 공정에서 단순히 조절 가능 한 기체의 유량, 압력 등 운전 변수들을 제어하며 분리 막 공정에 대한 특징 및 한계를 확인하였고, 2단 공정 구성을 통하여 순도와 회수율의 상호제한적 관계를 극 복하고자 하였다. 또한 최종적으로 2단 회수 공정을 반 영하여 모사혼합가스를 대상으로 이산화탄소 순도 90%, 회수율 90%을 달성하는 공정 조건을 도출할 수 있었다. 앞으로 분산형 수소개질기의 설치가 일반화되 고 보급률이 높아지며 블루수소를 위한 소규모 공정 규 모의 유연성이 보장되고, 공정 설치 및 운전이 용이한 분리막 공정의 중요성은 더욱 강조될 것이라고 생각된 다. 본 연구 결과가 추후 우리나라 블루수소 보급에 도 움이 되길 바란다.

감 사

이 결과물은 환경부의 재원으로 한국환경산업기술원 의 대기환경 관리기술 사업화 연계 기술개발사업(과제 번호: 2021003390008)의 지원을 받아 수행된 연구이며 이에 감사드립니다.

Reference

- https://h2hub.or.kr/main/stat/stat_product_method.do., November 21 (2023).
- https://www.msit.go.kr/bbs/view.do?sCode=user&mI d=113&mPid=112&bbsSeqNo=94&nttSeqNo=14905 93, January 18 (2019).
- H. H. Faheem, H. U. Tanveer, S. Z. Abbas, and F. Maqbool, "Comparative study of conventional steam-methane-reforming (SMR) and auto-thermalreforming (ATR) with their hybrid sorption enhanced (SE-SMR & SE-ATR) and environmentally benign process models for the hydrogen production", *Fuel*, 297, 120769 (2021).

- L. Barelli, G. Bidini, F. Gallorini, and S. Servili, "Hydrogen production through sorption-enhanced steam methane reforming and membrane technology: A review", *Energy*, 33, 554 (2008).
- J.-R., Han, J. Park, Y. Kim, C. Y. Lee, and H. S. Kim, "Analysis of CO₂ emission depending on hydrogen production methods in korea", *KIGAS*, 23, 1 (2019).
- C. Alonso-Moreno and S. García-Yuste, "Environmental potential of the use of CO₂ from alcoholic fermentation processes. The CO₂-AFP strategy", *Sci. Total Environ.*, 568, 3196 (2016).
- A. Boyano, A. M. B.-Marigorta, T. Morosuk, and G. Tsatsaronis, "Exergoenvironmental analysis of a steam methane reforming process for hydrogen production", *Energy*, **36**, 2202 (2011).
- G. Collodi, G. Azzaro, N. Ferrari, and S. Santos, "Techno-economic evaluation of SMR based standalone (merchant) hydrogen plant with CCS", IEA Environmental Projects Ltd. (IEAGHG), Cheltenham, UK (2017).
- V. Arora, R. K. Saran, R. Kumar, and S. Yadav, "Separation and sequestration of CO₂ in geological formations", *Mater. Sci. Energy Technol.*, 2, 647 (2019).
- G. T. Rochelle, "Amine scrubbing for CO₂ Capture", Science, **325**, 1652 (2009).
- 11. B. Seo, J. H. Kim, H. Ahn, B. J. Chang, and K. H Lee, "The state of the art of membrane technol-

ogy for separation of carbon dioxide from flue gas", Korean Ind. Chem. News, 14, 1 (2011).

- D. F. Sanders, Z. P. Smith, R. Guo, L. M. Robeson, J. E. McGrath, and D. R. Paul, "Energyefficient polymeric gas separation membranes for a sustainable future: A review", *Polymer*, 54, 4729 (2013).
- A. Brunetti, F. Scura, G. Barbieri, and E. Drioli, "Membrane technologies for CO₂ separation", *J. Memb. Sci.*, **359**, 115 (2010).
- M. Khayet, C. Cojocaru, and G. Z.-Trznadel. "Studies on pervaporation separation of acetone, acetonitrile and ethanol from aqueous solutions", *Sep. Purif. Technol.*, 63, 303 (2008).
- P. Delgado, M. T. Sanz, and S. Beltrán, "Pervaporation of the quaternary mixture present during the esterification of lactic acid with ethanol", *J. Memb. Sci.*, 332, 113 (2009).
- X. Feng, P. Shao, R. Y. M. Huang, G. Jiang, and R.-X. Xu, "A study of silicone rubber/polysulfone composite membranes: Correlating H₂/N₂ and O₂/N₂ permselectivities", *Sep. Purif. Technol.*, **27**, 211 (2002).
- L. D. Biondo, J. Duarte, M. Zeni, and M. Godinho, "A dual-mode model interpretation of CO₂/CH₄ permeability in polysulfone membranes at low pressures", *An Acad. Bras. Cienc.*, **90**, 1855 (2018).