DOI QR코드

DOI QR Code

Evaluating the Efficacy of Commercial Polysulfone Hollow Fiber Membranes for Separating H2 from H2/CO Gas Mixtures

상용 폴리설폰 중공사막의 수소/일산화탄소 혼합가스 분리 성능 평가

  • Do Hyoung Kang (Department of Marine Environmental Engineering, Gyeongsang National University) ;
  • Kwanho Jeong (Department of Environmental Engineering, Chosun University) ;
  • Yudam Jeong (Department of Marine Environmental Engineering, Gyeongsang National University) ;
  • Seung Hyun Song (Department of Marine Environmental Engineering, Gyeongsang National University) ;
  • Seunghee Lee (Department of Marine Environmental Engineering, Gyeongsang National University) ;
  • Sang Yong Nam (Department of Materials Engineering and Convergence Technology, Research Institute for Green Energy Convergence Technology, Gyeongsang National University) ;
  • Jae-Kyung Jang (Department of Agricultural Engineering, Energy and Environmental Engineering Division, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Euntae Yang (Department of Marine Environmental Engineering, Gyeongsang National University)
  • 강도형 (경상국립대학교 해양환경공학과) ;
  • 정관호 (조선대학교 환경공학과) ;
  • 정유담 (경상국립대학교 해양환경공학과) ;
  • 송승현 (경상국립대학교 해양환경공학과) ;
  • 이승희 (경상국립대학교 해양환경공학과) ;
  • 남상용 (경상국립대학교 그린에너지융합연구소 나노신소재융합공학과) ;
  • 장재경 (국립농업과학원 에너지환경공학부 농업공학과) ;
  • 양은태 (경상국립대학교 해양환경공학과)
  • Received : 2023.11.20
  • Accepted : 2023.11.28
  • Published : 2023.12.31

Abstract

Steam methane reforming is currently the most widely used technology for producing hydrogen, a clean fuel. Hydrogen produced by steam methane reforming contains impurities such as carbon monoxide, and it is essential to undergo an appropriate post-purification step for commercial usage, such as fuel cells. Recently, membrane separation technology has been gaining great attention as an effective purification method; in this study, we evaluated the feasibility of using commercial polysulfone membranes for biogas upgrading to separate and recover hydrogen from a hydrogen/carbon monoxide gas mixture. Initially, we examined the physicochemical properties of the commercial membrane used. We then conducted performance evaluations of the commercial membrane module under various conditions using mixed gas, considering factors such as stage-cut and operating pressure. Finally, based on the evaluation results, we carried out simulations for process design. The maximum H2 permeability and H2/CO separation factor for the commercial membrane process were recorded at 361 GPU and 20.6, respectively. Additionally, the CO removal efficiency reached up to 94%, and the produced hydrogen concentration achieved a maximum of 99.1%.

청정 연료인 수소를 생산하기 위해 현재 가장 널리 사용되는 기술인 증기 개질이다. 이 방법으로 생산된 수소는 일산화탄소와 같은 불순물을 함유하고 있어, 이를 연료전지와 같은 응용분야에 사용하기 위해서는 적절한 정제 과정을 반드시 거쳐야 한다. 최근 효과적인 정제 방법으로 분리막 기술이 각광받고 있다. 본 연구에서는 수소와 일산화탄소 혼합가스에서 수소 분리 및 회수를 위해 바이오가스 고질화용(biogas upgrading) 상용 폴리설폰(polysulfone) 고분자막의 활용 가능성에 대해서 평가하였다. 먼저, 사용한 상용막의 물리화학적 특성에 대해서 평가하였고, H2/CO를 이용하여 stage-cut, 운전압력과 같은 다양한 조건에서의 상용막 모듈의 성능 평가를 진행하였다. 마지막으로, 평가 결과를 바탕으로 공정설계를 위한 시뮬레이션을 진행하였다. 본 연구에서의 상용 분리막 공정의 최대 H2 투과도와 H2/CO 분리계수는 각각 361 GPU와 20.6을 기록하였다. 또한, CO 제거 효율은 최대 94%를 나타내었으며, 생산 수소 농도는 최대 99.1%를 달성하였다.

Keywords

Acknowledgement

이 논문은 정부 농촌진흥청의 지원을 받아 수행된 연구임(PJ016259)

References

  1. J. Houghton, Global warming, Rep. Prog. Phys., 68, 1343 (2005).
  2. S. I. Zandalinas, F. B. Fritschi, and R. Mittler, "Global warming, climate change, and environmental pollution: Recipe for a multifactorial stress combination disaster", Trends Plant Sci., 26, 588- 599 (2021). https://doi.org/10.1016/j.tplants.2021.02.011
  3. T. N. Veziroglu and S. Sahin, "21st Century's energy: Hydrogen energy system", Energy Convers. Manag., 49, 1820-1831 (2008). https://doi.org/10.1016/j.enconman.2007.08.015
  4. H. H. Cho, V. Strezov, and T. J. Evans, "A review on global warming potential, challenges and opportunities of renewable hydrogen production technologies", Sustain. Mater. Technol., 35, e00567 (2023).
  5. P. Nikolaidis and A. Poullikkas, "A comparative overview of hydrogen production processes", Renew. Sust. Energy Rev., 67, 597-611 (2017). https://doi.org/10.1016/j.rser.2016.09.044
  6. R. W. Howarth and M. Z. Jacobson, "How green is blue hydrogen?", Energy Sci. Eng., 9, 1676- 1687 (2021). https://doi.org/10.1002/ese3.956
  7. S. Singla, N. P. Shetti, S. Basu, K. Mondal, and T. M. Aminabhavi, "Hydrogen production technologies - Membrane based separation, storage and challenges", J. Environ. Manage., 302, 113963 (2022).
  8. W. Choi, P. G. Ingole, J.-S. Park, D.-W. Lee, J.-H. Kim, and H.-K. Lee, "H2/CO mixture gas separation using composite hollow fiber membranes prepared by interfacial polymerization method", Chem. Eng. Res. Des., 102, 297-306 (2015). https://doi.org/10.1016/j.cherd.2015.06.037
  9. Y. S. Cheng, M. A. Pena, J. L. Fierro, D. C. W. Hui, and K. L. Yeung, "Performance of alumina, zeolite, palladium, Pd-Ag alloy membranes for hydrogen separation from Towngas mixture", J. Membr. Sci., 204, 329-340 (2002). https://doi.org/10.1016/S0376-7388(02)00059-5
  10. A. S. K. Raju, C. S. Park, and J. M. Norbeck, "Synthesis gas production using steam hydrogasification and steam reforming", Fuel Process. Technol., 90, 330-336 (2009). https://doi.org/10.1016/j.fuproc.2008.09.011
  11. S. J. Kim, S. H. Han, J. H. Yim, C. S. Lee, W. S. Chang, G. J. Kim, and S. Y. Ha, "Highly efficient biogas upgrading process using polysulfone hollow fiber membrane at low temperature", Membr. J., 32, 140-149 (2022). https://doi.org/10.14579/MEMBRANE_JOURNAL.2022.32.2.140
  12. A. Mansourizadeh and A. F. Ismail, "Effect of additives on the structure and performance of polysulfone hollow fiber membranes for CO2 absorption", J. Membr. Sci., 348, 260-267 (2010). https://doi.org/10.1016/j.memsci.2009.11.010
  13. F. Hamidavi, A. Kargari, and A. Eliassi, "Sorption and permeation study of polyetherimide/hydrophobic silica nanocomposite membrane for effective syngas (H2/CO/CO2) separation", Sep. Purif. Technol., 279, 119774 (2021).
  14. G. He, Y. Mi, P. Lock Yue, and G. Chen, "Theoretical study on concentration polarization in gas separation membrane processes", J. Membr. Sci., 153, 243-258 (1999). https://doi.org/10.1016/S0376-7388(98)00257-9
  15. H. Z. Chen and T.-S. Chung, "CO2-selective membranes for hydrogen purification and the effect of carbon monoxide (CO) on its gas separation performance", Int. J. Hydrog. Energy, 37, 6001-6011 (2012). https://doi.org/10.1016/j.ijhydene.2011.12.124
  16. C. Castel, L. Wang, J. P. Corriou, and E. Favre, "Steady vs unsteady membrane gas separation processes", Chem. Eng. Sci., 183, 136-147 (2018). https://doi.org/10.1016/j.ces.2018.03.013
  17. M.-Y. Wey, H.-H. Chen, Y.-T. Lin, and H.-H. Tseng, "Thin carbon hollow fiber membrane with Knudsen diffusion for hydrogen/alkane separation: Effects of hollow fiber module design and gas flow mode", Int. J. Hydrog. Energy, 45, 7290- 7302 (2020). https://doi.org/10.1016/j.ijhydene.2019.09.135