DOI QR코드

DOI QR Code

마이크로기공 고분자(PIM-1)의 분자량 분포에 따른 이산화탄소 기체 분리막의 성능 변화 연구

Effect of Molecular Weight Distribution of Intrinsically Microporous Polymer (PIM-1) Membrane on the CO2 Separation Performance

  • 권지민 (국립부경대학교 화학공학과) ;
  • 손혜정 (국립부경대학교 화학공학과) ;
  • 김진욱 (국립부경대학교 화학공학과) ;
  • 이창수 (국립부경대학교 화학공학과)
  • Ji Min Kwon (Department of Chemical Engineering, Pukyong National University) ;
  • Hye Jeong Son (Department of Chemical Engineering, Pukyong National University) ;
  • Jin Uk Kim (Department of Chemical Engineering, Pukyong National University) ;
  • Chang Soo Lee (Department of Chemical Engineering, Pukyong National University)
  • 투고 : 2023.12.05
  • 심사 : 2023.12.06
  • 발행 : 2023.12.31

초록

이 연구 논문은 기후 변화에 대한 전 세계적인 우려와 온실 가스 배출 감소를 위한 필수적인 요구에 대응하여 마이크로기공 고분자(PIM-1)의 이용을 탐구한 것이다. 연구는 PIM-1 막을 이산화탄소(CO2) 가스 분리 막으로 사용하는 현대적인 소재로서의 응용에 집중하고 있다. 연구는 PIM-1 막의 합성, 분자량 제어, 그리고 제각각의 특성 분석 기술을 통해 포괄적인 통찰을 제공하며, 이러한 특성 분석 기술을 통해 PIM-1의 고유한 교차결합 및 강성 구조에서 비롯된 내재적 다공성이 특히 이산화탄소의 선택적 투과에 활용되고 있다. 논문은 PIM-1의 가교된 구조로부터 비롯된 내재적 다공성이 특히 이산화탄소의 선택적 투과에 활용되고 있다. 논문은 PIM-1의 튜닝 가능한 화학적 특성을 강조하며, 가스 분리 막의 맞춤 및 최적화를 가능케 하는 특성에 대한 이해를 제시하고 있다. 분자량을 통제함으로써 고분자량(H-PIM-1) 막은 낮은 분자량 대비 더 뛰어난 CO2 투과성과 선택성을 나타내며, 이를 통해 PIM-1 막의 특성을 조절하는 데 분자량의 중요성을 강조하고 있다. 연구 결과는 PIM-1 막 특성을 조절하는 데 분자량이 중요한 역할을 하는 것을 강조하며, 이는 기후 변화의 긴급한 글로벌 도전에 대응하기 위한 효율적이고 선택적인 CO2 포집을 위한 차세대 막 기술의 발전에 기여하고 있다.

This research article explores the application of Polymer of Intrinsic Microporosity (PIM-1) as a cutting-edge material for CO2 gas separation membranes in response to the escalating global concern over climate change and the imperative to reduce greenhouse gas emissions. The study delves into the synthesis, molecular weight control, and fabrication of PIM-1 membranes, providing comprehensive insights through various characterization techniques. The intrinsic microporosity of PIM-1, arising from its unique crosslinked and rigid structure, is harnessed for selective gas permeation, particularly of carbon dioxide. The article emphasizes the tunable chemical properties of PIM-1, allowing for customization and optimization of gas separation membranes. By controlling the molecular weight, higher molecular weight (H-PIM-1) membranes are demonstrated to exhibit superior CO2 permeability and selectivity compared to lower molecular weight counterparts (L-PIM-1). The study's findings highlight the critical role of molecular weight in tailoring PIM-1 membrane properties, contributing to the advancement of next-generation membrane technologies for efficient and selective CO2 capture-an essential step in addressing the pressing global challenge of climate change.

키워드

과제정보

This work was supported by a Research Grant of Pukyong National University(2023).

참고문헌

  1. Y. S. S. Young and P. Rajkumar, "Ionic liquid consisted of composite membrane for carbon dioxide separation: A review", Membr. J., 33, 240-247 (2023).  https://doi.org/10.14579/MEMBRANE_JOURNAL.2023.33.5.240
  2. K. H. Chul, M.-J. Jeon, S.-C. Jung, and Y.-W. Jeon, "Preparation and properties of hollow fiber membrane for CO2/H2 separation", Membr. J., 33, 222-232 (2023).  https://doi.org/10.14579/MEMBRANE_JOURNAL.2023.33.4.222
  3. X. Lv, X. Li, L. Huang, S. Ding, Y. Lv, and J. Zhang, "Tailoring physical and chemical micro-environments by polyether-amine in blended membranes for efficient CO2 separation", Korean J. Chem. Eng., 39, 475-483 (2022).  https://doi.org/10.1007/s11814-021-0991-1
  4. S. He, B. Zhu, S. Li, Y. Zhang, X. Jiang, C. Hon Lau, and L. Shao, "Recent progress in PIM-1 based membranes for sustainable CO2 separations: Polymer structure manipulation and mixed matrix membrane design", Sep. Purif. Technol., 284, 120277 (2022). 
  5. H. Iqubal, H. Asmaul, and P. H. Bum, "1,3-dioxolane-based CO2 selective polymer membranes for gas separation", Membr. J., 33, 94-109 (2023).  https://doi.org/10.14579/MEMBRANE_JOURNAL.2023.33.3.94
  6. S. Mohsenpour, A. W. Ameen, S. Leaper, C. Skuse, F. Almansour, P. M. Budd, and P. Gorgojo, "PIM-1 membranes containing POSS-graphene oxide for CO2 separation", Sep. Purif. Technol., 298, 121447 (2022). 
  7. M. Tamaddondar, A. B. Foster, M. Carta, P. Gorgojo, N. B. McKeown, and P. M. Budd, "Mitigation of physical aging with mixed matrix membranes based on cross-linked PIM-1 fillers and PIM-1", ACS Appl. Mater. Interfaces, 12, 46756- 46766 (2020).  https://doi.org/10.1021/acsami.0c13838
  8. M. M. Khan, G. Bengtson, S. Shishatskiy, B. N. Gacal, M. M. Rahman, S. Neumann, V. Filiz, and V. Abetz, "Cross-linking of polymer of intrinsic microporosity (PIM-1) via nitrene reaction and its effect on gas transport property", Eur. Polym. J., 49, 4157-4166 (2013).  https://doi.org/10.1016/j.eurpolymj.2013.09.022
  9. S. Thomas, I. Pinnau, N. Du, and M. D. Guiver, "Pure-and mixed-gas permeation properties of a microporous spirobisindane-based ladder polymer (PIM-1)", J. Membr. Sci., 333, 125-131 (2009).  https://doi.org/10.1016/j.memsci.2009.02.003
  10. M. Tian, S. Rochat, H. Fawcett, A. D. Burrows, C. R. Bowen, and T. J. Mays, "Chemical modification of the polymer of intrinsic microporosity PIM-1 for enhanced hydrogen storage", Adsorption, 26, 1083-1091 (2020).  https://doi.org/10.1007/s10450-020-00239-y
  11. W. Han, C. Zhang, M. Zhao, F. Yang, Y. Yang, and Y. Weng, "Post-modification of PIM-1 and simultaneously in situ synthesis of porous polymer networks into PIM-1 matrix to enhance CO2 separation performance", J. Membr. Sci., 636, 119544 (2021). 
  12. J. Jun Kyu, Y. Chaewon, and P. Ho Bum, "Surface modification of poly(tetrafluoroethylene) (PTFE) membranes", Membr. J., 33, 1-12 (2023).  https://doi.org/10.14579/MEMBRANE_JOURNAL.2023.33.1.1
  13. R. Swaidan, B. S. Ghanem, E. Litwiller, and I. Pinnau, "Pure-and mixed-gas CO2/CH4 separation properties of PIM-1 and an amidoxime-functionalized PIM-1", J. Membr. Sci., 457, 95-102 (2014).  https://doi.org/10.1016/j.memsci.2014.01.055
  14. J. Guan, X. Wang, J. Du, Q. Liang, W. He, Y. Liu, J. Ma, C. Zhang, and J. Liu, "Surface-engineered PIM-1 membranes for facile CO2 capture", Chem. Eng. J., 477, 147017 (2023). 
  15. X. Niu, G. Dong, D. Li, Y. Zhang, and Y. Zhang, "Atomic layer deposition modified PIM-1 membranes for improved CO2 separation: A comparative study on the microstructure-performance relationships", J. Membr. Sci., 664, 121103 (2022). 
  16. P. M. Budd, B. S. Ghanem, S. Makhseed, N. B. McKeown, K. J. Msayib, and C. E. Tattershall, "Polymers of intrinsic microporosity (PIMs): Robust, solution-processable, organic nanoporous materials", Chem. Commun., 2, 230-231 (2004). 
  17. J. T. Burke, "IR spectroscopy or Hooke's law at the molecular level-a joint freshman physics-chemistry experience", J. Chem. Educ., 74, 1213 (1997). 
  18. F. Y. Li, Y. Xiao, T.-S. Chung, and S. Kawi, "High-performance thermally self-cross-linked polymer of intrinsic microporosity (PIM-1) membranes for energy development", Macromolecules, 45, 1427-1437 (2012).  https://doi.org/10.1021/ma202667y
  19. I. Ponomarev, D. Y. Razorenov, I. Blagodatskikh, A. Muranov, L. Starannikova, A. Y. Alent'ev, R. Y. Nikiforov, and Y. P. Yampol'skii, "Polymer with intrinsic microporosity PIM-1: New methods of synthesis and gas transport properties", Polym. Sci. Ser. B, 61, 605-612 (2019).  https://doi.org/10.1134/S1560090419050142
  20. R. Hou, S. J. Smith, C. D. Wood, R. J. Mulder, C. H. Lau, H. Wang, and M. R. Hill, "Solvation effects on the permeation and aging performance of PIM-1-based MMMs for gas separation", ACS Appl. Mater. Interfaces, 11, 6502-6511 (2019).  https://doi.org/10.1021/acsami.8b19207
  21. J. Li, M. Zhang, W. Feng, L. Zhu, and L. Zhang, "PIM-1 pore-filled thin film composite membranes for tunable organic solvent nanofiltration", J. Membr. Sci., 601, 117951 (2020). 
  22. H. W. Kim, "Intrinsic permeation properties of graphene oxide membranes for gas and ion separations", Membr. J., 32, 1-12 (2022).  https://doi.org/10.14579/MEMBRANE_JOURNAL.2022.32.1.1
  23. E. S. Yi, S. R. Hong, and H. K. Lee, "CO2 separation performance of PEBAX mixed matrix membrane using PEI-GO@ZIF-8 as filler", Membr. J., 33, 23-33 (2023).  https://doi.org/10.14579/MEMBRANE_JOURNAL.2023.33.1.23
  24. W. Fan, S. Yuan, W. Wang, L. Feng, X. Liu, X. Zhang, X. Wang, Z. Kang, F. Dai, and D. Yuan, "Optimizing multivariate metal-organic frameworks for efficient C2H2/CO2 separation", J. Am. Chem. Soc., 142, 8728-8737 (2020). https://doi.org/10.1021/jacs.0c00805