DOI QR코드

DOI QR Code

산화방지 작용기를 함유한 산화 그래핀이 도입된 과불소화계 복합 막의 고분자 전해질 막 연료전지로의 응용

Perfluorosulfonic Acid Composite Membranes Containing Antioxidant Grafted Graphene Oxide for Polymer Electrolyte Membrane Fuel Cell Applications

  • 황인혁 (경상국립대학교 나노신소재융합공학과) ;
  • 김기현 (경상국립대학교 나노신소재융합공학과)
  • Inhyeok Hwang (Department of Materials Engineering and Convergence Technology, Gyeongsang National University) ;
  • Kihyun Kim (Department of Materials Engineering and Convergence Technology, Gyeongsang National University)
  • 투고 : 2023.12.05
  • 심사 : 2023.12.17
  • 발행 : 2023.12.31

초록

본 연구에서는 산화 방지 특성이 있는 가리워진 아민기를 함유한 산화 그래핀(hindered amine grafted graphene oxide, HA-GO)을 합성하여 이를 도입한 나피온(Nafion) 기반의 복합 막을 제조한 후 고분자 전해질 막 연료전지 시스템에 응용하였다. HA-GO는 4-아미노-2, 2, 6, 6-테트라메틸-4-피페리딘(4-amino-2, 2, 6, 6-tetramethyl piperidine)에 존재하는 아민기와 GO 표면에 존재하는 에폭시기의 개환 반응을 통해 제조하였으며, 합성된 HA-GO의 함량을 달리한 복합 막을 제조하여 순수 Nafion 막과 성능 특성을 비교하였다. HA-GO가 첨가된 복합 막은 Nafion 단일 막에 비해 기계적 물성, 화학적 안정성 및 수소이온 전도 특성이 향상되었다. 특히 HA-GO의 산화 방지 특성으로 인해 HA-GO가 첨가된 복합 막은 펜톤 평가(Fenton's test) 이후 수소이온 전도도의 유지 특성이 Nafion 단일 막에 비해 큰 폭으로 향상된 것을 확인할 수 있었다.

In this study, hindered amine-grafted graphene oxide (HA-GO) with antioxidant properties was prepared and incorporated into Nafion-based composite membranes as an effective filler material for polymer electrolyte membrane fuel cell applications. HA-GO was synthesized via a ring-opening reaction between amine groups in 4-amino-2, 2, 6, 6-tetramethyl piperidine and epoxy groups on the surface of GO. Nafion-based composite membranes containing different weight contents of HA-GO were fabricated to compare the polymer electrolyte membrane properties with those of the pure Nafion membrane. The composite membranes with HA-GO were found to have better mechanical properties, chemical stability, and proton conductivity than the pure Nafion membrane. In particular, the conductivity retention behavior confirmed by the decrease in proton conductivity after Fenton's test of the composite membranes was better than that of the pure Nafion membrane due to the incorporation of HA-GO with effective antioxidant properties.

키워드

과제정보

이 연구는 2023년도 정부의 재원으로 한국연구재단사업 (NRF-2022M3J7A1062940, NRF-2020R1A6A1A03038697, NRF-2022R1F1A1072548)의 지원을 받아 수행되었습니다.

참고문헌

  1. S. Bose, T. Kuila, T. X. H. Nguyen, N. H. Kim, K. T. Lau, and J. H. Lee, "Polymer membranes for high temperature proton exchange membrane fuel cell: Recent advances and challenges", Prog. Polym. Sci., 36, 813-843 (2011).  https://doi.org/10.1016/j.progpolymsci.2011.01.003
  2. N. G. Moreno, M. C. Molina, D. Gervasio, and J. F. P. Robles, "Water transport in polymer electrolyte membrane fuel cells", Prog. Energ. Combust., 37, 221-291 (2011).  https://doi.org/10.1016/j.pecs.2010.06.002
  3. K. Jiao and X. Li, "Water transport in polymer electrolyte membrane fuel cells", Prog. Energ. Combust., 37, 221-291 (2011).  https://doi.org/10.1016/j.pecs.2010.06.002
  4. P. Costamagna, "Transport phenomena in polymeric membrane fuel cells", Chem. Eng. Sci., 56, 323-332 (2001).  https://doi.org/10.1016/S0009-2509(00)00232-3
  5. J. Graetz, "New approaches to hydrogen storage", Chem. Soc. Rev., 38, 73-82 (2009).  https://doi.org/10.1039/B718842K
  6. Y. Wang, K. S. Chen, J. Mishler, S. C. Cho, and X. C. Adroher, "A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research", Appl. Energy., 88, 981-1007 (2011).  https://doi.org/10.1016/j.apenergy.2010.09.030
  7. F. Zhang, P. Zhao, M. Niu, and J. Maddy, "The survey of key technologies in hydrogen energy storage", Int. J. Hydrogen. Energ., 41, 14535-14552 (2016).  https://doi.org/10.1016/j.ijhydene.2016.05.293
  8. A. Zuttel, A. Remhof, A. Borgschulte, and O. Friedrichs, "Hydrogen: the future energy carrier", Philos. T. Roy. Soc. A., 368, 3329-3342 (2010).  https://doi.org/10.1098/rsta.2010.0113
  9. A. Hassanpouryouzband, E. Joonaki, K. Edlmann, and R. S. Haszeldine, "Offshore geological storage of hydrogen: is this our best option to achieve net-zero?", ACS. Energy. Lett., 6, 2181-2186 (2021).  https://doi.org/10.1021/acsenergylett.1c00845
  10. M. Kim, H. Ko, S. Y. Nam, and K. Kim, "Study on control of polymeric architecture of sulfonated hydrocarbon-based polymers for high-performance polymer electrolyte membranes in fuel cell applications", Polymers, 13, 3520 (2021). 
  11. W. R. W. Daud, R. E. Rosli, E. H. Majlan, S. A. A. Hamid, R. Mohamed, and T. Husaini, "PEM fuel cell system control: A review", Renew. Energ., 113, 620-638 (2017).  https://doi.org/10.1016/j.renene.2017.06.027
  12. T. Ko, K. Kim, M. Y. Lim, S. Y. Nam, T. H. Kim, S. K. Kim, and J. C. Lee, "Sulfonated poly (arylene ether sulfone) composite membranes having poly (2, 5-benzimidazole)-grafted graphene oxide for fuel cell applications", J. Mater. Chem. A., 3, 20595-20606 (2015).  https://doi.org/10.1039/C5TA04849D
  13. H. Nguyen, C. Klose, L. Metzler, S. Vierrath, and M. Breitwieser, "Fully hydrocarbon membrane electrode assemblies for proton exchange membrane fuel cells and electrolyzers: An engineering perspective", Adv. Energy. Mater., 12, 2103559 (2022). 
  14. K. Kim, P. Heo, J. Han, J. Kim, and J. C. Lee, "End-group cross-linked sulfonated poly (arylene ether sulfone) via thiol-ene click reaction for high-performance proton exchange membrane", J. Power. Sources., 401, 20-28 (2018).  https://doi.org/10.1016/j.jpowsour.2018.08.053
  15. A. Vitale, R. Bongiovanni, and B. Ameduri, "Fluorinated oligomers and polymers in photopolymerization", Chem. Rev., 115.16, 8835-8866 (2015).  https://doi.org/10.1021/acs.chemrev.5b00120
  16. H. Lee, J. Han, K. Kim, J. Kim, E. Kim, H. Shin, and J. C. Lee, "Highly sulfonated polymer-grafted graphene oxide composite membranes for proton exchange membrane fuel cells", J. Ind. Eng. Chem., 74, 223-232 (2019).  https://doi.org/10.1016/j.jiec.2019.03.012
  17. J. Lee, J. Q. Kim, H. Ko, I. Hwang, Y. Lee, K. Kim, and S. Q. Choi, "Sub-20 nm ultrathin perfluorosulfonic acid-grafted graphene oxide composite membranes for vanadium redox flow batteries", J. Membrane. Sci., 688, 122150 (2023). 
  18. C. Choi, S. Hwang, and K. Kim, "Research trends on developments of high-performance perfluorinated sulfonic acid-based polymer electrolyte membranes for polymer electrolyte membrane fuel cell applications", Membr. J., 32, 292-303 (2022).  https://doi.org/10.14579/MEMBRANE_JOURNAL.2022.32.5.292
  19. H. B. Song, J. H. Park, J. S. Park, and M. S. Kang, "Pore-filled proton-exchange membranes with fluorinated moiety for fuel cell application", Energies, 14, 4433 (2021). 
  20. X. Wang, S. Wei, Y. Wu, H. Cai, Z. Qu, and P. He, "Achieving high electrochemical performance of PEMFCs with ultrathin and highly conductive graphite-resin composite bipolar plates", Int. J. Hydrogen. Energ., 55, 654-664 (2023). 
  21. J. Sharma, P. Upadhyay, S. Mishra, and V. Kulshrestha, "Hydrophilic tailoring of s-PEEK polyelectrolyte with CeMnOx bimetal oxide to sustain oxidative dilemma and improve PEMFC performance", Int. J. Hydrogen. Energ., 48, 10941-10954 (2023).  https://doi.org/10.1016/j.ijhydene.2022.12.132
  22. J. Y. Chu, K. H. Lee, A. R. Kim, and D. J. Yoo, "Improved electrochemical performance of composite anion exchange membranes for fuel cells through cross linking of the polymer chain with functionalized graphene oxide", J. Membrane. Sci., 611, 118385 (2020). 
  23. M. Y. Lim, J. Oh, H. J. Kim, K. Y. Kim, S. S. Lee, and J. C. Lee, "Effect of antioxidant grafted graphene oxides on the mechanical and thermal properties of polyketone composites", Eur. Polym. J., 69, 156-167 (2015).  https://doi.org/10.1016/j.eurpolymj.2015.06.009
  24. K. Kim, J. Bae, M. Y. Lim, P. Heo, S. W. Choi, H. H. Kwon, and J. C. Lee, "Enhanced physical stability and chemical durability of sulfonated poly (arylene ether sulfone) composite membranes having antioxidant grafted graphene oxide for polymer electrolyte membrane fuel cell applications", J. Membrane. Sci., 525, 125-134 (2017).  https://doi.org/10.1016/j.memsci.2016.10.038
  25. D. C. Lee, H. N. Yang, S. H. Park, and W. J. Kim, "Nafion/graphene oxide composite membranes for low humidifying polymer electrolyte membrane fuel cell", J. Membrane. Sci., 452, 20-28 (2014).  https://doi.org/10.1016/j.memsci.2013.10.018
  26. N. uregen, K. Pehlivanoglu, Y. Ozdemir, and Y. Devrim, "Development of polybenzimidazole/graphene oxide composite membranes for high temperature PEM fuel cells", Int. J. Hydrogen. Energ., 42, 2636-2647 (2017).  https://doi.org/10.1016/j.ijhydene.2016.07.009
  27. C. Yin, J. Li, Y. Zhou, H. Zhang, P. Fang, and C. He, "Enhancement in proton conductivity and thermal stability in nafion membranes induced by incorporation of sulfonated carbon nanotubes", ACS. Appl. Mater. Inter., 10, 14026-14035 (2018).  https://doi.org/10.1021/acsami.8b01513
  28. N. P. Cele and S. S. Ray, "Effect of multiwalled carbon nanotube loading on the properties of Nafion® membranes", J. Mater. Res., 30, 66-78 (2015).  https://doi.org/10.1557/jmr.2014.304
  29. M. Shabani, H. Younesi, M. Pontie, A. Rahimpour, M. Rahimnejad, H. Guo, and A. Szymczyk, "Enhancement of microbial fuel cell efficiency by incorporation of graphene oxide and functionalized graphene oxide in sulfonated polyethersulfone membrane", Renew. Energ., 179, 788-801 (2021).  https://doi.org/10.1016/j.renene.2021.07.080
  30. R. Gensler, C. J. G. Plummer, H. H. Kausch, E. Kramer, J. R. Pauquet, and H. Zweifel, "Thermo-oxidative degradation of isotactic polypropylene at high temperatures: Phenolic antioxidants versus HAS", Polym. Degrad. Stab., 67, 195-208 (2000).  https://doi.org/10.1016/S0141-3910(99)00113-5
  31. E. T. Denisov, "The role and reactions of nitroxyl radicals in hindered piperidine light stabilisation", Polym. Degrad. Stab., 34, 325-332 (1991).  https://doi.org/10.1016/0141-3910(91)90126-C
  32. W. Yu, L. Sisi, Y. Haiyan, and L. Jie, "Progress in the functional modification of graphene/graphene oxide: A review", RSC. Adv., 10, 15328-15345 (2020).  https://doi.org/10.1039/D0RA01068E
  33. D. C. Marcano, D. V. Kosynkin, J. M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, and J. M. Tour, "Improved synthesis of graphene oxide", ACS. Nano., 4, 4806-4814 (2010).  https://doi.org/10.1021/nn1006368
  34. W. S. Hummers Jr and R. E. Offeman, "Preparation of graphitic oxide", J. Am. Chem. Soc., 80, 1339-1339 (1958).  https://doi.org/10.1021/ja01539a017
  35. J. Shim, D. G. Kim, H. J. Kim, J. H. Lee, J. H. Baik, and J. C. Lee, "Novel composite polymer electrolytes containing poly (ethylene glycol)-grafted graphene oxide for all-solid-state lithium-ion battery applications", J. Mater. Chem. A., 2, 13873-13883 (2014).  https://doi.org/10.1039/C4TA02667E
  36. J. M. Fenton, M. P. Rodgers, D. K. Slattery, X. Huang, V. O. Mittal, L. J. Bonville, and H. R. Kunz, "Membrane degradation mechanisms and accelerated durability testing of proton exchange membrane fuel cells", Ecs. Transactions., 25, 233 (2009). 
  37. J. Ali, Y. Li, E. Shang, X. Wang, J. Zhao, M. Mohiuddin, and X. Xia, "Aggregation of graphene oxide and its environmental implications in the aquatic environment", Chinese. Chem. Lett., 34, 107327 (2023). 
  38. M. Cano, U. Khan, T. Sainsbury, A. O'Neill, Z. Wang, I. T. McGovern, and J. N. Coleman, "Improving the mechanical properties of graphene oxide based materials by covalent attachment of polymer chains", Carbon, 52, 363-371 (2013).  https://doi.org/10.1016/j.carbon.2012.09.046
  39. S. Gao, H. Xu, Z. Fang, A. Ouadah, H. Chen, X. Chen, and C. Zhu, "Highly sulfonated poly (ether ether ketone) grafted on graphene oxide as nanohybrid proton exchange membrane applied in fuel cells", Electrochem. Acta., 283, 428-437 (2018).  https://doi.org/10.1016/j.electacta.2018.06.180
  40. S. Chakraborty, S. Saha, V. R. Dhanak, K. Biswas, M. Barbezat, G. P. Terrasi, and A. K. Chakraborty, "High yield synthesis of amine functionalized graphene oxide and its surface properties", RSC. Adv., 6, 67916-67924 (2016).  https://doi.org/10.1039/C6RA12844K
  41. J. Dong, J. Weng, and L. Dai, "The effect of graphene on the lower critical solution temperature of poly (N-isopropylacrylamide)", Carbon, 52, 326-336 (2013).  https://doi.org/10.1016/j.carbon.2012.09.034
  42. Z. Xu and C. Gao, "In situ polymerization approach to graphene-reinforced nylon-6 composites", Macromolecules, 43, 6716-6723 (2010).  https://doi.org/10.1021/ma1009337
  43. Z. Wang, Y. Dong, H. Li, Z. Zhao, H. Bin Wu, C. Hao, and X. W. Lou, "Enhancing lithium-sulphur battery performance by strongly binding the discharge products on amino-functionalized reduced graphene oxide", Nat. Commun., 5, 5002 (2014). 
  44. S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, and R. S. Ruoff, "Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide", Carbon, 45, 1558-1565 (2007).  https://doi.org/10.1016/j.carbon.2007.02.034
  45. W. Ai, W. Zhou, Z. Du, Y. Du, H. Zhang, X. Jia, and W. Huang, "Benzoxazole and benzimidazole heterocycle-grafted graphene for high-performance supercapacitor electrodes", J. Mater. Chem., 22, 23439-23446 (2012).  https://doi.org/10.1039/c2jm35234f
  46. J. Li, G. Xiao, C. Chen, R. Li, and D. Yan, "Superior dispersions of reduced graphene oxide synthesized by using gallic acid as a reductant and stabilizer", J. Mater. Chem. A., 1, 1481-1487 (2013).  https://doi.org/10.1039/C2TA00638C
  47. A. Choudhury, "Preparation and characterization of nanocomposites of poly-p-phenylene benzobisthiazole with graphene nanosheets", RSC. Adv., 4, 8856-8866 (2014).  https://doi.org/10.1039/c3ra46908e
  48. M. Y. Lim, H. J. Kim, S. J. Baek, K. Y. Kim, S. S. Lee, and J. C. Lee, "Improved strength and toughness of polyketone composites using extremely small amount of polyamide 6 grafted graphene oxides", Carbon, 77, 366-378 (2014).  https://doi.org/10.1016/j.carbon.2014.05.040
  49. X. Meng, M. Wang, L. Yang, H. Ye, C. Cong, Y. Dong, and Q. Zhou, "Effects of amino-functionalized graphene oxide on the mechanical and thermal properties of polyoxymethylene", Ind. Eng. Chem. Res., 56, 15038-15048 (2017).  https://doi.org/10.1021/acs.iecr.7b02698
  50. M. Bodner, B. Marius, A. Schenk, and V. Hacker, "Determining the total fluorine emission rate in polymer electrolyte fuel cell effluent water", ECS. Transactions., 80, 559 (2017). 
  51. R. Singh, P. C. Sui, K. H. Wong, E. Kjeang, S. Knights, and N. Djilali, "Modeling the effect of chemical membrane degradation on PEMFC performance", J. Electrochem. Soc., 165, F3328 (2018). 
  52. J. S. Stevens, S. J. Byard, C. C. Seaton, G. Sadiq, R. J. Davey, and S. L. Schroeder, "Crystallography aided by atomic core-level binding energies: Proton transfer versus hydrogen bonding in organic crystal structures", Angew. Chem. Int. Ed, 50, 9916-9918 (2011).  https://doi.org/10.1002/anie.201103981
  53. P. Gilli, L. Pretto, V. Bertolasi, and G. Gilli, "Predicting hydrogen-bond strengths from acid-base molecular properties. The p K a slide rule: Toward the solution of a long-lasting problem", Accounts. Chem. Res., 42, 33-44 (2009).  https://doi.org/10.1021/ar800001k
  54. K. U. Ingold and D. A. Pratt, "Advances in radical-trapping antioxidant chemistry in the 21st century: a kinetics and mechanisms perspective", Chem. Rev., 114, 9022-9046 (2014).  https://doi.org/10.1021/cr500226n
  55. J. Han, H. Lee, J. Kim, S. Kim, H. Kim, E. Kim, and J. C. Lee, "Sulfonated poly (arylene ether sulfone) composite membrane having sulfonated polytriazole grafted graphene oxide for high-performance proton exchange membrane fuel cells", J. Membrane. Sci., 612, 118428 (2020). 
  56. K. Kim, H. Heo, W. Hwang, J. Baik, E. Sung, and J. Lee, "Cross-linked sulfonated poly(arylene ether sulfone) containing a flexible and hydrophobic perfluoropolyether cross-linker for high-performance proton exchange membrane", ACS Appl. Mater. Interfaces., 10, 21788-21793 (2018).  https://doi.org/10.1021/acsami.8b05139
  57. T. Ko, K. Kim, S. Kim, and J. Lee, "Organic/inorganic composite membranes comprising of sulfonated Poly(arylene ether sulfone) and core-shell silica particles having acidic and basic polymer shells", Polymer, 71, 70-81 (2015). https://doi.org/10.1016/j.polymer.2015.06.055