DOI QR코드

DOI QR Code

Study of Oxygen Barrier Properties of Silk Fibroin Composite Membrane Using Molecular Dynamics Simulation

분자동역학 전산모사를 활용한 실크 피브로인 복합막의 산소 차단성 연구

  • Young Jin Seo (Department of Energy Engineering, Future Convergence Technology Research Institute, Gyeongsang National University) ;
  • Na Yeong Kwon (Department of Energy Engineering, Future Convergence Technology Research Institute, Gyeongsang National University) ;
  • Chi Hoon Park (Department of Energy Engineering, Future Convergence Technology Research Institute, Gyeongsang National University)
  • 서영진 (경상국립대학교 미래융복합기술연구소 에너지공학과) ;
  • 권나영 (경상국립대학교 미래융복합기술연구소 에너지공학과) ;
  • 박치훈 (경상국립대학교 미래융복합기술연구소 에너지공학과)
  • Received : 2023.12.18
  • Accepted : 2023.12.21
  • Published : 2023.12.31

Abstract

The performance of computer systems and the development of various computer simulation programs have made it possible to analyze chemical systems composed of more complex elements, and accordingly, research using molecular dynamics simulation is being actively conducted. Research on calculating the gas permeation characteristics of polymer membranes by molecular dynamics, which was previously conducted mainly through experiments, is receiving attention for gas barrier membranes used in food packaging and pharmaceuticals. Recently, there has been a report that a gas barrier effect appears when a coating film is made using silk fibroin, and in this study, a study was conducted using molecular dynamics simulation to confirm whether an oxygen barrier effect appears when a composite film is made using silk fibroin. We built a single model, calculated the gas permeation characteristics, and compared it with the experimental value to confirm that the model reflects the actual experimental results. Actual composite membrane models were then built and the gas movement path within the polymer was analyzed. As a result, oxygen molecules were found that they could not pass through and was blocked in the fibroin region. Therefore, the composite membrane with silk fibroin has excellent oxygen barrier property and is expected to be useful in food packaging, etc.

컴퓨터 시스템의 성능 및 다양한 전산모사 프로그램의 발전으로 더 복잡한 원소로 이루어진 화학시스템의 해석이 가능해지고, 그에 따라 분자동역학 전사모사를 활용한 연구가 활발히 이루어지고 있다. 특히, 기존에는 실험위주로 진행되던 고분자 막에 대한 기체 투과 특성을 계산하는 연구가 관심을 받고 있고, 식품포장, 의약품등에 사용되고 있는 기체차단성 막에 대한 분자동역학 연구가 많이 이루어지고 있다. 최근 실크 피브로인을 이용해 코팅막을 만들었을 때 기체 차단 효과가 나타난다는 보고가 있었고, 본 연구에서는 이러한 실크 피브로인을 활용해 복합막을 만들었을 때 산소 차단 효과가 나타나는지 확인하고자 분자동역학 전산모사를 이용해 연구를 진행하였다. 단일 모델을 제작하고 기체 투과 특성을 계산하고 실험값과 비교를 통해 모델이 실제 실험 결과를 반영하는 것을 확인하였고, 실제 복합막 모델을 만들어 고분자 내에서 기체 이동경로 분석을 진행한 결과 산소 분자가 피브로인 영역을 통과하지 못하고 막히는 것을 보여주었다. 따라서, 실크 피브로인이 도입된 복합막이 산소 차단 성능이 우수하여, 식품포장 등에 유용할 것으로 기대된다.

Keywords

Acknowledgement

본 과제(결과물)는 교육부와 한국연구재단의 재원으로 지원을 받아 수행된 3단계 산학연협력 선도대학 육성사업(LINC 3.0)의 연구결과입니다.

References

  1. C. H. Choi and C. H. Park, "Review on the computer simulation tools for polymeric membrane researches", Membr. J., 30, 242 (2020).
  2. M. T. Lusk and A. E. Mattsson, "High-performance computing for materials design to advance energy science", MRS Bull., 36, 169 (2011).
  3. C. H. Park and S. Y. Nam, "Mesoscale simulation of polymeric membranes for energy and environmental application", Membr. J., 27, 121 (2017).
  4. I. Abou Hamad, M. Novotny, D. Wipf, and P. Rikvold, "A new battery-charging method suggested by molecular dynamics simulations", Phys. Chem. Chem. Phys., 12, 2740 (2010).
  5. S. H. Kwon, S. Y. Lee, H.-J. Kim, H.-T. Kim, and S. G. Lee, "Molecular dynamics simulation to reveal effects of binder content on Pt/C catalyst coverage in a high-temperature polymer electrolyte membrane fuel cell", ACS Appl. Nano Mater., 1, 3251 (2018).
  6. C. H. Park, C. H. Lee, J.-Y. Sohn, H. B. Park, M. D. Guiver, and Y. M. Lee, "Phase separation and water channel formation in sulfonated block copolyimide", J. Phys. Chem. B, 114, 12036 (2010).
  7. S. Charati and S. Stern, "Diffusion of gases in silicone polymers: molecular dynamics simulations", Macromolecules, 31, 5529 (1998).
  8. C. H. Park, D. J. Kim, and S. Y. Nam, "Molecular dynamics (MD) study of polymeric membranes for gas separation", Membr. J., 24, 341 (2014).
  9. K. Lee, H. K. Kim, and S. B. Kil, "Prospect of graphene based gas-barrier materials", Korean Ind. Chem. News, 16, 47 (2013).
  10. B. Marelli, M. Brenckle, D. L. Kaplan, and F. G. Omenetto, "Silk fibroin as edible coating for perishable food preservation", Sci. Rep., 6, 25263 (2016).
  11. Y. Qi, H. Wang, K. Wei, Y. Yang, R.-Y. Zheng, I. S. Kim, and K.-Q. Zhang, "A review of structure construction of silk fibroin biomaterials from single structures to multi-level structures", Int. J. Mol. Sci., 18, 237 (2017).
  12. S. H. Choi, S.-W. Kim, Z. Ku, M. A. Visbal-Onufrak, S.-R. Kim, K.-H. Choi, H. Ko, W. Choi, A. M. Urbas, and T.-W. Goo, "Anderson light localization in biological nanostructures of native silk", Nat. Commun., 9, 452 (2018).
  13. S.-Y. Cho, H.-H. Park, and H.-J. Jin, "Controlling pore size of electrospun silk fibroin scaffold for tissue engineering", Polym. Korea, 36, 651 (2012).
  14. Y. Wang, X. Wang, J. Shi, R. Zhu, J. Zhang, Z. Zhang, D. Ma, Y. Hou, F. Lin, and J. Yang, "A biomimetic silk fibroin/sodium alginate composite scaffold for soft tissue engineering", Sci. Rep., 6, 39477 (2016).
  15. Y. J. Seo, H. Kang, K. S. Im, K.-m. Choi, C. H. Park, S. Y. Nam, and H. N. Jang, "Fabrication of electrospun composite membranes with silk powder", Membr. J., 32, 133 (2022).
  16. R. L. Akkermans, N. A. Spenley, and S. H. Robertson, "COMPASS III: Automated fitting workflows and extension to ionic liquids", Mol. Simul., 47, 540 (2021).
  17. J. Beckers, C. Lowe, and S. De Leeuw, "An iterative PPPM method for simulating Coulombic systems on distributed memory parallel computers", Mol. Simul., 20, 369 (1998).
  18. https://www.materialdatacenter.com/ms/en/Eval/Kura ray/EVAL%E2%84%A2+F171B/6200496c/1008.
  19. H. Hashim, F. El-Mekawey, H. El-Kashef, and R. Ghazy, "Determination of scattering parameters of polyvinyl alcohol by static laser scattering", Benisuef Univ. J. Basic Appl. Sci., 3, 203 (2014).
  20. H. Kweon, H. C. Ha, I. C. Um, and Y. H. Park, "Physical properties of silk fibroin/chitosan blend films", J. Appl. Polym. Sci., 80, 928 (2001).
  21. D. Frenkel and B. Smit, "Understanding molecular simulation: From algorithms to applications", pp. 481-494, Elsevier, Amsterdam, Netherlands (2023).
  22. W. H. Lee, J. G. Seong, J. Y. Bae, H. H. Wang, S. J. Moon, J. T. Jung, Y. S. Do, H. Kang, C. H. Park, and Y. M. Lee, "Thermally rearranged semi-interpenetrating polymer network (TR-SIPN) membranes for gas and olefin/paraffin separation", J. Membr. Sci., 625, 119157 (2021).
  23. C. Rizzuto, A. Caravella, A. Brunetti, C. H. Park, Y. M. Lee, E. Drioli, G. Barbieri, and E. Tocci, "Sorption and diffusion of CO2/N2 in gas mixture in thermally-rearranged polymeric membranes: A molecular investigation", J. Membr. Sci., 528, 135 (2017).
  24. S. Schiessl, E. Kucukpinar, S. Cros, O. Miesbauer, H.-C. Langowski, and P. Eisner, "Nanocomposite coatings based on polyvinyl alcohol and montmorillonite for high-barrier food packaging", Front. Nutr., 9, 790157 (2022).
  25. https://eval.kuraray.com/products-services/about-eval-evoh/properties/barrier-to-oxygen.