DOI QR코드

DOI QR Code

A Concretization and Application of Deductive Problem Making Method

연역적 문제만들기 방법의 구체화와 활용

  • Received : 2023.11.27
  • Accepted : 2023.12.22
  • Published : 2023.12.31

Abstract

The development of mathematical problem solving ability and the making(transforming) mathematical problems are consistently emphasized in the mathematics curriculum. However, research on the problem making methods or the analysis of the characteristics of problem making methods itself is not yet active in mathematics education in Korea. In this study, we concretize the method of deductive problem making(DPM) in a different direction from the what-if-not method proposed by Brown & Walter, and present the characteristics and phases of this method. Since in DPM the components of the problem solving process of the initial problem are changed and problems are made by going backwards from the phases of problem solving procedure, so the problem solving process precedes the formulating problem. The DPM is related to the verifying and expanding the results of problem solving in the reflection phase of problem solving. And when a teacher wants to transform or expand an initial problem for practice problems or tests, etc., DPM can be used.

수학과 교육과정에서 수학 문제해결력 신장, 수학 문제만들기 등이 꾸준히 강조되고 있다. 본 연구에서는 Brown & Walter가 제안한 what-if-not 방법과는 다른 방향의 문제만들기 방법을 연구하였다. 여기서 다루는 문제만들기 방법에서는 출발점 문제의 문제해결 과정을 분석하여 그 구성 요소들을 변화시키며, 얻어진 변화를 바탕으로 문제해결 과정을 역으로 거슬러 올라가면서 새로운 문제, 즉 출발점 문제를 변형시킨 문제를 만들었다. 이러한 순서로 문제를 만들면, 문제해결 과정으로부터 새로운 변형된 문제가 유도될 수 있다. 즉, 문제해결 과정이 문제에 선행하게 되며, 본 연구에서는 이러한 문제만들기 방법을 연역적 문제만들기라고 명명하였다. 특히, 연역적 문제만들기의 다양한 사례들, 특징들을 구체적으로 제시하였으며, 치환을 이용하여 로그가 포함된 방정식으로부터 지수, 무리식, 삼각함수가 포함된 방정식 등을 만드는 과정을 소개하였다. 연역적 문제만들기는 문제해결의 반성 단계에서 문제해결 결과를 검증하고 확장하는 활동과 관련될 수 있으며, 수학 교사가 개념 정착, 복습 등과 같은 교수학적 목적에 따라 기존 문제를 변형시킬 때도 활용할 수 있을 것으로 기대된다.

Keywords

References

  1. Ko, S. (2007). Making problems through What-If-Not activities. KEDI. 
  2. Ministry of Education(2000). Mathematics curriculum of elementary and secondary school(1946-1997). MOE. 
  3. Ministry of Education (2022). Mathematics curriculum. Notification of the Ministry of Education No. 2022-33 [supplement 8]. MOE. 
  4. Seo, M., & Park, M. (2021). The effects of open-ended mathematical problem solving learning on mathematical creativity and attitudes of elementary students. Communications of Mathematical Education, 35(3), 277-293.  https://doi.org/10.7468/JKSMEE.2021.35.3.277
  5. Seo, J., & Youn, S. (2022). Development of creative problem-solving activities for integrating mathematics and information science: Focusing on the hat game for mathematically gifted students. Communications of Mathematical Education, 36(3), 439-467. 
  6. Oh, Y., & Jeon, Y. (2018). The effect of problem-posing activities on the affective eomain of mathematics. The Journal of the Korea Contents Association, 18(2), 541-552. 
  7. Woo, J. (2004). Principles and methods of learning-teaching mathematics. SNU Press. 
  8. Woo, J. & Kang, M. (1993). An educational study on the Lakatos' philosophy of mathematics. The Journal of Educational Research in Mathematics, 3(2), 1-16. 
  9. Lee, K., Hwang, D. (2007). Correlation between gifted and regular students in mathematical problem posing and mathematical creativity ability. The Mathematical Education, 46(4), 503-519.  https://doi.org/10.7468/mathedu.2016.55.4.503
  10. Lee, D. (2017). The analysis of problem posing cases of pre-service primary teachers. School Mathematics, 19(1), 1-18. 
  11. Lee, M., & Choi, I. (2019). An analysis of problem-posing activities of pre-service mathematic teachers using Swedish college scholastic ability test problems. The Journal of Learner-Centered Curriculum and Instruction, 19(16), 1053-1078. 
  12. Lee, J., & Han, H. (2018). The effects of mathematical problem posing activities on 10th grade students' mathematics achievement and affective characteristic of mathematics. Communications of Mathematical Education, 32(3), 385-406.  https://doi.org/10.7468/JKSMEE.2018.32.3.385
  13. Lee, H., & Park, M. (2018). A comparative analysis on the mathematical problem posing according to the tasks with different degrees of structure by the gifted and non-gifted elementary students. Journal of Elementary Mathematics Education in Korea, 22(3), 309-330. 
  14. Jeong, D., Kim, S., & Kim, J. (2009). Understanding and teaching mathematics problem-solving. Hakjisa.
  15. Jeong, S., & Park, M. (2010). The effects of the mathematical problem generating program on problem solving ability and learning attitude. Journal of Elementary Mathematics Education in Korea, 14(2), 315-335. 
  16. Han, I. (2020). Learning polynomials and knowing mathematics. Kyowoo. 
  17. Han, I. & Kolyagin, Yu. (2006). Theory and practice of problem solving. Seungsan. 
  18. Han, H. (2018). A case study on mathematical problem posing in pre-service mathematics teacher education. The Korean School Mathematics Society, 21(1), 63-89. 
  19. Han, H., & Joo, H. (2016). The analysis of middle school students' problem posing types and strategies. The Mathematical Education, 55(1), 73-89. 
  20. Hwang, H., Cho, S., & Park, J. (2023). The new theory of mathematics education 3. Mooneumsa. 
  21. Brown S., & Walter M. (1990). The art of problem posing. Lawrence Erlbaum Associates Inc. 
  22. Krutetskii V.A. (1968). Psychology of mathematical abilities of schoolchildren. Education. (In Russian) 
  23. Lakatos I. (1976). Proof and refutation. Cambridge University Press. 
  24. Polya G. (2005). How to solve It?. (우정호 역). 어떻게 문제를 풀 것인가?. 교우사 (원저 1971년 출판)