DOI QR코드

DOI QR Code

How Do Students Use Conceptual Understanding in the Design of Sensemaking?: Considering Epistemic Criteria for the Generation of Questions and Design of Investigation Processes

중학생의 센스메이킹 설계에서 개념적 이해는 어떻게 활용되는가? -질문 고안과 조사 과정 설계에서 논의된 인식적 준거를 중심으로-

  • Heesoo Ha (Center for Educational Research, Seoul National University)
  • 하희수 (서울대학교 교육종합연구원)
  • Received : 2023.09.26
  • Accepted : 2023.12.05
  • Published : 2023.12.31

Abstract

Teachers often encounter challenges in supporting students with question generation and the development of investigation plans in sensemaking activities. A primary challenge stems from the ambiguity surrounding how students apply their conceptual understandings in this process. This study aims to explore how students apply their conceptual understandings to generate questions and design investigation processes in a sensemaking activity. Two types of student group activities were identified and examined for comparison: One focused on designing a process to achieve the goal of sensemaking, and the other focused on following the step-by-step scientific inquiry procedures. The design of investigation process in each group was concretized with epistemic criteria used for evaluating the designs. The students' use of conceptual understandings in discussions around each was then examined. The findings reveal three epistemic criteria employed in generating questions and designing investigation processes. First, the students examined the interestingness of natural phenomena, using their conceptual understandings of the structure and function of entities within natural phenomena to identify a target phenomenon. This process involved verifying their existing knowledge to determine the need for new understanding. The second criterion was the feasibility of investigating specific variables with the given resources. Here, the students relied on their conceptual understandings of the structure and function of entities corresponding to each variable to assess whether each variable could be investigated. The third epistemic criterion involved examining whether the factors of target phenomena expressed in everyday terms could be translated into observable variables capable of explaining the phenomena. Conceptual understandings related to the function of entities were used to translate everyday expressions into observable variables and vice versa. The students' conceptual understanding of a comprehensive mechanism was used to connect the elements of the phenomenon and use the elements as potential factors to explain the target phenomenon. In the case where the students focused on carrying out step-by-step procedures, data collection feasibility was the sole epistemic criterion guiding the design. This study contributes to elucidating how the process of a sensemaking activity can be developed in the science classroom and developing conceptual supports for designing sensemaking activities that align with students' perspectives.

센스메이킹 활동에서 교사는 학생과 함께 질문을 고안하고 조사과정을 설계할 때 많은 어려움을 겪는다. 그 주된 이유로 새로운 설명을 고안하는 과정에서 개념적 이해가 어떻게 활용되는지 예상하기 어렵다는 점이 있다. 본 연구에서는 센스메이킹 목표하에 이루어지는 활동 설계에서 어떠한 인식적 준거 활용되는지 밝히고, 각 준거를 중심으로 한 논의에서 학생의 개념적 이해가 어떻게 활용되는지 드러내고자 했다. 이를 위해 센스메이킹 활동에 참여한 학생들의 조별 활동 과정을 탐색했으며, 이때 센스메이킹의 목표하에 이루어진 질문 고안과 조사 과정 설계과 탐구활동의 단순화된 절차 수행의 목표가 잘 반영된 과정을 비교 탐색했다. 분석 결과, 센스메이킹 과정 설계에서 활용되는 인식적 준거는 현상의 흥미로움 여부, 자료 수집 가능성, 관측 가능하며 현상을 설명할 수 있는 변인으로의 해석 가능성으로 도출되었다. 이에 반해 탐구활동의 단순화된 절차 수행의 목표가 두드러진 사례에서는 자료 수집 가능성만이 인식적 준거로 활용된 것으로 나타났다. 현상의 흥미로움 여부를 중심으로 한 논의에서는 탐구하는 현상 속 요소의 구조, 기능에 관한 개념적 이해가 학생들이 탐구하고자 하는 현상을 규명하고 해당 현상에 대한 기존 지식을 점검하는 과정에서 활용되었다. 야외에서 자연현상을 탐색하는 과정에서 관측 자료, 즉 사실적 이해가 형성되는 것으로 나타났다. 이와 더불어 탐구하고자 하는 현상과 관련하여 문헌에서 찾아낸 정보인 사실적 이해는 해당 현상에 대한 새로운 지식 고안이 필요한지 여부를 판단하는 데 활용되었다. 자료 수집 가능성에 대한 논의에서는 탐구 현상의 구성 요소를 주어진 자원 내에서 조사할 수 있을지 판단하는 과정에서 각 요소에 대응하는 구조, 기능에 관한 개념적 이해가 활용되었다. 이때 각 요소의 관측 가능성을 논하며 절차적 이해가 함께 활용되었다. 세 번째 인식적 준거는 관측 가능하며 현상을 설명할 수 있는 변인으로의 해석 가능성이었다. 이 준거를 바탕으로 한 논의에서는 일상 용어를 활용한 표현을 관측 가능한 변인으로 변환하고, 다시 관측 결과 구성한 사실적 이해의 의미를 일상 용어로 해석할 수 있는 방안이 다루어졌다. 이 과정에서 기능에 관한 개념적 이해, 해당 개념과 관련된 사실적 이해가 활용되었다. 그리고 탐구하는 현상의 요소들을 변인으로 해석하기 위해서 해당 현상을 설명할 수 있는 포괄적인 기작에 대한 개념적 이해가 활용되었다. 본 연구 결과는 과학 수업에 자연현상에 대한 설명 구성 과정을 도입한 취지를 반영한 센스메이킹 활동을 운영하고, 학생과 함께 센스메이킹 과정을 설계할 때의 개념적 지원 방안을 마련하는 데 기여할 수 있을 것으로 기대한다.

Keywords

Acknowledgement

이 논문은 2020년도 대한민국 교육부와 한국연구재단의 지원을 받아 수행된 연구임(NRF-2020S1A5B5A16083113).

References

  1. Anderson, L. W., & Krathwohl, D. R. (2001). A taxonomy for learning, teaching and assessing: A revision of Bloom's taxonomy of educational objectives. Longman.
  2. Baze, C., Gonzalez-Howard, M., Sampson, V., Fenech, M., Crawford, R., Hutner, T., Chu, L., & Hamilton, X. (2023). Understanding student use of epistemic criteria in engineering design contexts. Science Education. http://doi.org/10.1002/sce.21795
  3. Buckley, B. C. (2000). Interactive multimedia and model-based learning in biology. International Journal of Science Education, 22(9), 895-935. https://doi.org/10.1080/095006900416848
  4. Chen, Y. C., & Techawitthayachinda, R. (2021). Developing deep learning in science classrooms: Tactics to manage epistemic uncertainty during whole-class discussion. Journal of Research in Science Teaching, 58(8), 1083-1116. https://doi.org/10.1002/tea.21693
  5. Cherbow, K., & McNeill, K. L. (2022). Planning for student-driven discussions: A revelatory case of curricular sensemaking for epistemic agency. Journal of the Learning Sciences, 31(3), 408-457. https://doi.org/10.1080/10508406.2021.2024433
  6. Chi, M. T. H., Slotta, J. D., & de Leeuw, N. (1994). From things to processes: A theory of conceptual change for learning science concepts. Learning and Instruction, 4, 27-43. https://doi.org/10.1016/0959-4752(94)90017-5
  7. Chin, C., & Brown, D. E. (2002). Student-generated questions: A meaningful aspect of learning in science. International Journal of Science Education, 24(5), 521-549.
  8. de Jong, T., Ferguson-Hessler, M. G. M. (1996). Types and qualities of knowledge. Educational Psychologist, 31(2), 105-113. https://doi.org/10.1207/s15326985ep3102_2
  9. Duncan, R. G., Chinn, C. A., & Barzilai, S. (2018). Grasp of evidence: Problematizing and expanding the next generation science standards' conceptualization of evidence. Journal of Research in Science Teaching, 55, 907-937.
  10. Duncan, R. G., Tate, C., & Chinn, C. A. (2014). Students' use of evidence and epistemic criteria in model generation and model evaluation. ICLS 2014 Proceedings (pp. 615-622).
  11. Emden, M. (2021). Reintroducing "the" scientific method to introduce scientific inquiry in schools?: A cautioning plea not to throw out the baby with the bathwater. Science & Education, 30, 1037-1073. https://doi.org/10.1007/s11191-021-00235-w
  12. Erduran, S., Ioannidou, O., & Baird, J. -A. (2021). The impact of epistemic framing of teaching videos and summative assessments on students' learning of scientific methods. International Journal of Science Education, 43(18), 2885-2910.
  13. Ford, E. D. (2004). Scientific method for ecological research. Cambridge University Press.
  14. Garcia-Carmona, A. (2020). From inquiry-based science education to the approach based on scientific practices: A critical anaysis and suggestions for science teaching. Science & Education, 29, 443-463. https://doi.org/10.1007/s11191-020-00108-8
  15. Glaser, B. G., & Strauss, A. L. (1967). The discovery of grounded theory: Strategies for qualitative research. Aldine.
  16. Ha, H., & Choi, Y. (2022). Exploring the enactment of epistemic and conceptual resources for productive engagement in the modeling activity including empirical investigations of ecosystems. Biology Education, 50(2), 155-171.
  17. Hogan, K., & Maglienti, M. (2001). Comparing the epistemological underpinnings of students' and scientists' reasoning about conclusions. Journal of Research in Science Teaching, 38(6), 663-687. https://doi.org/10.1002/tea.1025
  18. Jeong, E., Lee, Y., Ha, H., Cho, H., & Kim, H. -B. (2017). Exploring the possibilities of students' conception construction through inquiry activities in middle school science textbooks. Biology Education, 45(3), 371-389. https://doi.org/10.15717/BIOEDU.2017.45.3.371
  19. Manz, E. (2012). Understanding the codevelopment of modeling practice and ecological knowledge. Science Education, 96(6), 1071-1105. https://doi.org/10.1002/sce.21030
  20. Merriam, S. B. (2009). Qualitative research: A guide to design and implementation (2nd ed.). Jossey-Bass.
  21. Miles, M. B., Huberman, A. M., & Saldana, J. (2014). Qualitative data anlysis: A methods sourcebook. Sage.
  22. Ministry of Education (2022). 2022 Revised Curriculum. Ministry of Education Notice No. 2022-33 [Annex 9]. Ministry of Education.
  23. National Research Council [NRC] (2012). A framework for K-12 science education: Practices, crosscutting concepts, and core ideas. National Academies Press.
  24. Nersessian, N. J. (2012). Engineering concepts: The interplay between concept formation and modeling practices in bioengineering sciences. Mind, Culture, and Activity, 19(3), 222-239. https://doi.org/10.1080/10749039.2012.688232
  25. Odden, T. O. B., & Russ, R. (2019). Defining sensemaking: Bringing clarity to a fragmented theoretical construct. Science Education, 103, 187-205. https://doi.org/10.1002/sce.21452
  26. Oh, P. S., Ha, H., & Yoo, J. Y. (2022). Epistemological messages in a modeling-based elementary science classroom compared with a traditional classroom. Science Education, 106, 797-829.
  27. Osborne, J. (2014). Teaching scientific practices: Meeting the challenge of change. Journal of Science Teacher Education, 25, 177-196. https://doi.org/10.1007/s10972-014-9384-1
  28. Phillips, A. M., Watkins, J., & Hammer, D. (2018). Beyond "asking questions": Problematizing as a disciplinary activity. Journal of Research in Science Teaching, 55, 982-998. https://doi.org/10.1002/tea.21477
  29. Pluta, W. J., Chinn, C. A., & Duncan, R. G. (2011). Learners' epistemic criteria for good scientific models. Journal of Research in Science Teaching, 48(5), 486-511.
  30. Reiser, B. J., Novak, M., McGill, T. A. W., & Penuel, W. R. (2021). Storyline units: An instructional model to support coherence from the students' perspective. Journal of Science Teacher Education, 32(7), 805-829. https://doi.org/10.1080/1046560X.2021.1884784
  31. Rheinberger, H. -J. (1997). Toward a history of epistemic things: Synthesizing proteins in the test tube. Stanford University Press.
  32. Rittle-Johnson, B., & Koedinger, K. R. (2005). Designing knowledge scaffolds to support mathematical problem solving. Cognition and Instruction, 23(3), 313-349. https://doi.org/10.1207/s1532690xci2303_1
  33. Russ, R. S., & Berland, L. K. (2019). Invented science: A framework for discussing a persistent problem of practice. Journal of the Learning Sciences, 28(3), 279-301.
  34. Saenz, C. (2009). The role of contextual, conceptual and procedural knowledge inactivating mathematical competencies (PISA). Educational Studies in Mathematics, 71, 123-143. https://doi.org/10.1007/s10649-008-9167-8
  35. Samarapungavan, A., Westby, E. L., & Bodner, G. M. (2006). Contextual epistemic development in science: A comparison of chemistry students and research chemists. Science Education, 90(3), 468-495. https://doi.org/10.1002/sce.20111
  36. Sampson, V., Grooms, J., & Walker, J. P. (2010). Argument-driven inquiry as a way to help students learn how to participate in scientific argumentation and craft written arguments: An exploratory study. Science Education, 95(2), 217-257. https://doi.org/10.1002/sce.20421
  37. Santini, J., Bloor, T., & Sensevy, G. (2018). Modeling conceptualization and investigating teaching effectiveness. Science & Education, 27, 921-961. https://doi.org/10.1007/s11191-018-0016-6
  38. Schwarz, C. V., Passmore, C., & Reiser, B. J. (2017). Helping students make sense of the world using next generation science and engineering practices. NSTA.
  39. Sikorski, T. R., & Hammer, D. (2017). Looking for coherence in science curriculum. Science Education, 101(6), 929-943. https://doi.org/10.1002/sce.21299
  40. Star, J. R. (2013, April). On the relationship between knowing and doing in procedural learning. In Fourth international conference of the learning sciences (pp. 80-86).
  41. Vaughn, A. R., Brown, R. D., & Johnson, M. L. (2020). Understanding conceptual change and science learning through educational neuroscience. Mind, Brain, and Education, 14(2), 82-93. https://doi.org/10.1111/mbe.12237