DOI QR코드

DOI QR Code

Measurement of Combustible Characteristics of EC(Ethylene Carbonate) for Battery Electrolyte Organic Solvent

배터리 전해질 유기용매인 EC(Ethylene Carbonate)의 연소특성치 측정

  • Yu-Ri Jang (Dept. of Fire Disaster Prevention Engineering, Graduate School, Semyung University) ;
  • Yu-Seon Jang (Dept. of Fire Disaster Prevention Engineering, Graduate School, Semyung University) ;
  • Jae-Jun Choi (Dept. of Fire Disaster Prevention Engineering, Graduate School, Semyung University) ;
  • Dong-Myeong Ha (Dept. of Health and Safety, Semyung University)
  • 장유리 (세명대학교 소방방재공학과 대학원) ;
  • 장유선 (세명대학교 소방방재공학과 대학원) ;
  • 최재준 (세명대학교 소방방재공학과 대학원) ;
  • 하동명 (세명대학교 보건안전학과)
  • Received : 2023.07.26
  • Accepted : 2023.12.08
  • Published : 2023.12.31

Abstract

Lithium-ion secondary batteries are currently in high demand and supply. The purpose of this study is to secure the safety of the process by studying the combustion characteristics of EC(Ethylene Carbonate), Which is mainly used as an electrolyte organic solvent for lithium ion batteries. The flash points of the EC by using Setaflash and Pensky-Martens closed-cup testers were experimented at 141 ℃ and 143 ℃, respectively. The flash points of the EC by Tag and Cleveland open cup testers were experimented at 152 ℃ and 156 ℃, respectively. The AIT(Auto Ignition Temperature) of the EC was experimented at 420 ℃. The LEL(Lower Explosive Limit) calculated by using lower flash point of Setaflash was calculated at 3.6 Vol.%.

리튬이온 2차전지는 현재 많은 수요와 공급이 이루어지고 있다. 본 연구에서는 리튬이온전지의 전해질 유기용매로 사용되는 EC(Ethylene Carbonate)의 연소특성치 연구를 통해 이를 취급하는 공정의 안전성 확보를 목적으로 한다. 밀폐식 장치인 Setaflash와 Pensky-Martens에 의한 EC의 인화점은 141 ℃와 143 ℃, 개방식 장치인 Tag와 Cleveland는 각각 152 ℃와 156 ℃로 측정되었으며 AIT(Auto Ignition Temperature)는 420 ℃로 측정되었다. Setaflash에서 측정된 인화점에 의한 LEL(Lower Explosive Limit) 은 3.6 Vol.%로 계산되었다.

Keywords

References

  1. Ho, L. I., and Yoo, J. Y., "Technology Trends for Lithium-Ion Secondary Batteries", The Processing of the Institute of Electrical Engineers, 49(3), 21-25, (2000)
  2. Ujnews, http://ujnews.co.kr/news/
  3. Noh, Y. I., "Synthesis of Organosilicon-based electrolyte additives for highly stable Lithium-ion batteries", master's dissertation, Chosun University, (2018)
  4. Ha, D. M., "The Measurement and Prediction of Fire and Explosion Properties of n-Nonane", Journal of the Korean Society of Safety, 31(4), 42-48, (2016) https://doi.org/10.14346/JKOSOS.2016.31.5.42
  5. KOSHA, https://msds.kosha.or.kr/MSDSInfo/
  6. Lenga, R. E., and Votoupal, K. L., The Sigma Aldrich Library of Regulatory and Safety Data, Volume I~III, Sigma Chemical Company and Aldrich Chemical Company Inc., (1993)
  7. NFPA, Fire Hazard Properties of Flammable Liquid, Gases, and Volatile Solids, NFPA 325M, National Fire Protection Assosiation, (1991)
  8. Chemical book, https://www.chemicalbook.com/
  9. Acros, https://assets.thermofisher.com/
  10. Alfa, https://assets.thermofisher.com/
  11. Guo, F., "Flammability Study on Electrolyte Components in Lithium-ion Batteries Using A Wick Combustion Method.", (2019)
  12. KFI, https://hazmat.mpss.kfi.or.kr/
  13. Fisher Scientific, https://www.fishersci.co.uk/
  14. Huntsman, https://huntsman-pimcore.equisolve-dev.com/
  15. Stephson, R. M., Flash Points of Organic and Orgarnometallic Compounds, Elsevier Science Publishing Co. Inc., (1987)
  16. Haz-Map, https://haz-map.com/
  17. BenchChem, https://www.benchchem.com/
  18. Biosynth, https://www.biosynth.com/
  19. Echemi, https://www.echemi.com/
  20. GFS, https://www.gfschemicals.com/
  21. Oakwood Product , https://www.oakwoodchemical.com/
  22. Ha, D. M., "Measurement and Prediction of Combustuion Properties of di-n-Buthylamine", Journal of Energy Engineering, 28(4), 42-47, (2019) https://doi.org/10.5855/ENERGY.2019.28.4.042
  23. Gmehing, J., Onken, U., and Arlt, W., Vapor-Liquid Equilibrium Data Collection, DECHEMA, (1980)
  24. Ma, H. J., Kim, J. H., Lee, S. J., and Kim, C. H., "A Study on Life Cycle Estimation of Battery Using Arrhenius Equation", KIEE, 208-210, (2013)
  25. Ha, D. M., "The Measurement and Prediction of the Combustible Properties of Propionic Anhydride", J. of the Korean Institute of Gas, 20(3), 66-72, (2016) https://doi.org/10.7842/kigas.2016.20.3.66
  26. Semenov, N. N., Some Problems in Chemical Kinetics and Reactivity, Vol. 2, Princeton University Press, Princeton, (1959)