DOI QR코드

DOI QR Code

밀폐도 및 밀집도의 영향에 따른 가스폭발 실험 연구

Experimental Study on Gas Explosion According to the Effect of Confinement and Congestion Levels

  • 방부형 (경기과학기술대학교 건축소방안전학과)
  • Boohyoung Bang (Dept. of Architecture and Fire Safety, Gyeonggi Univ. of Science and Technology)
  • 투고 : 2023.10.20
  • 심사 : 2023.12.15
  • 발행 : 2023.12.31

초록

플랜트는 사회기반시설로써 중요한 보호시설이고, 여기서 발생 가능한 가스 누출 및 폭발과 같은 사고에 대한 안전성 확보는 설계 시 반드시 고려해야 한다. 하지만 플랜트에서의 폭발압력에 대한 연구는 경제성 등의 이유로 거의 없으며, 이에 대한 데이터가 부족한 실정이다. 본 연구에서는 플랜트에서 발생할 수 있는 폭발 시나리오를 고려한 실험 설계안을 제시하고 폭발 실험을 통해 폭압을 확인하였다. 가연성 물질로 수소-메테인 혼합 가스가 이용되었으며, 밀폐도와 밀집도가 폭압에 주는 영향에 대해 연구하였다. 밀폐도에 따라 압력파의 중첩이 폭압에 주는 영향과 밀집도에 따른 난류 영향을 구분하여 논의한다. 본 연구에서의 결과는 다양한 안전설계 시 입력자료로 활용될 수 있다.

The plant is an important facility as a infrastructure, and ensuring safety against possible accidents such as gas leaks and explosions must be considered in the design. However, there is little study on explosion pressure in plants for reasons such as economic feasibility, and overpressure data on this field is insufficient. In this study, an experimental design plan considering the explosion scenario that may occur in the plant was presented, and the explosion pressure was confirmed through an explosion experiment. Hydrogen-methane mixed gas was used as a combustible material, and the effect of confinement and congestion on overpressure was studied. The effect of overlapping pressure waves during deflagration and the turbulence effect by congested pipes are discussed. The results of this study can be used as input data in various safety designs.

키워드

과제정보

본 연구는 국토교통부/국토교통과학기술진흥원의 지원으로 수행되었음 (과제번호 RS-2021-KA163162)

참고문헌

  1. Jo, Y.D., Crowl, D.A., "Flame growth model for confined gas explosion", Process Safety Progress, 28, 141-146, (2009) https://doi.org/10.1002/prs.10289
  2. Jo, Y.D., Crowl, D.A., "Explosion characteristics of hydrogen-air mixtures in a spherical vessel", Process Safety Progress, 29 (2010) 216-223. https://doi.org/10.1002/prs.10370
  3. Zhou, B., Sobiesiak, A., Quan, P., "Flame behavior and flame-induced flow in a closed rectangular duct with a 90 bend", International Journal of Thermal Sciences, 45, 457-474, (2006) https://doi.org/10.1016/j.ijthermalsci.2005.07.001
  4. Jang, C. B., Lee, H. J., Lee, M. H., Min, D. C., Back, J. B., Ko, J. W., Kwon, H. M., "CFD Simulation Study to analyze the Dispersion and Explosion of Combustible Gas", Journal of the Korean Institute of Gas, 16(5), 58-65, (2012) https://doi.org/10.7842/kigas.2012.16.5.58
  5. Jung, I. G., Yoo, S. B., "Assessment of Gas Release Dispersion and Explosion in Pipeline", Journal of the Korean Institute of Gas, 2(2), 61-69, (1998)
  6. Razus, D., Brinzea, V., Mitu, M., Oancea, D., "Temperature and pressure influence on explosion pressures of closed vessel propane-air deflagrations", Journal of hazardous materials, 174 548-555, (2010) https://doi.org/10.1016/j.jhazmat.2009.09.086
  7. Mitu, M., Giurcan, V., Razus, D., Oancea, D., "Temperature and pressure influence on ethane-air deflagration parameters in a spherical closed vessel", Energy & Fuels, 26, 4840-4848, (2012) https://doi.org/10.1021/ef300849r
  8. Bang, B., Park, H., Kim, J., Al-Deyab, S.S., Yarin, A.L., Yoon, S.S., "Analytical and numerical assessments of local overpressure from hydrogen gas explosions in petrochemical plants", Fire and Materials, 41(6), 587-597, (2016). https://doi.org/10.1002/fam.2390
  9. Bang, B., Park, H.-S., Kim, J.-H., Al-Deyab, S.S., Yarin, A.L., Yoon, S.S., "Simplified method for estimating the effect of a hydrogen explosion on a nearby pipeline", Journal of Loss Prevention in the Process Industries, 40, 112-116, (2016) https://doi.org/10.1016/j.jlp.2015.12.008