과제정보
본 연구는 2023년도 산업통상자원부의 '기계산업핵심기술개발 (No. 20023669, KM230303)' 사업의 지원을 받아 연구되었습니다.
참고문헌
- Lee, D. W., Lee, H. H., Kim, J. S., Kim, J. S., A Study on the Surface Roughness Analysis by Cutting Condition in Machining of STAVAX mold for Vehicle Light Guide, Korean Society of Mechanical Technology, Vol. 24:6, 1106-1112, 2022.
- Lee, D. W., Lee, H. H., Kim, J. S., Kim, J. S., A study on surface roughness depending on cutting direction and cutting fluid type during micro-milling on STAVAX steel, Design & Manufacturing, Vol. 17:2, 22-26, 2023. https://doi.org/10.22847/KSDME.17.2.202306.004
- Kim, J. S., A study on the surface roughness of STD11 material according to the helix angle of ball endmill, Design & Manufacturing, vol. 17:1, 33-39, 2023.
- Hossain, M. S. J., Ahmad, N. Artificial intelligence based surface roughness prediction modeling for three dimensional end milling. Int. J. Adv. Sci. Technol., Vol. 45:8, 1-18. 2012.
- Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A., Talwalkar, A., Hyperband: A novel bandit-based approach to hyper-parameter optimization. J. Mach. Learn. Res. Vol. 18, 6765-6816. 2017.
- Lee, J. H., Kim, J. S., A study on the construction of the quality prediction model by artificial neural intelligence through integrated learning of CAE-based data and experimental data in the injection molding process, Design & Manufacturing, Vol. 15:4, 24-31, 2021.
- Lee, J. H., Kim, J. S., A study on the accuracy of multi-task learning structure artificial neural network applicable to multi-quality prediction in injection molding process, Design & Manufacturing, Vol. 16:3, 1-8, 2022.
- Kingma, D. P., Ba, J., Adam: A method for stochastic optimization., arXiv, 2014.