DOI QR코드

DOI QR Code

Acetobacter pasteurianus SRCM101388 바이오매스 생산 최적화

Optimization of biomass production of Acetobacter pasteurianus SRCM101388

  • Jun-Tae Kim (Microbial Institute for Fermentation Industry) ;
  • Sung-Ho Cho (Microbial Institute for Fermentation Industry) ;
  • Do-Youn Jeong (Microbial Institute for Fermentation Industry) ;
  • Young-Soo Kim (Department of Food Science and Technology, Jeonbuk National University)
  • 투고 : 2022.12.01
  • 심사 : 2023.01.03
  • 발행 : 2023.02.28

초록

본 연구에서는 식품 원료로 이용이 허가된 Acetobacter pasteurianus SRCM101388을 사용하여 바이오매스 고농도배양을 위한 최적화 연구를 실시하였다. SRCM101388의 최적 배양온도와 pH 조건은 각각 28℃와 pH 6.0으로 나타났다. 배지조건을 확립하기 위하여 Plackett-Burman design을 실시한 결과, glucose, sucrose, yeast extract가 biomass 증가에 가장 높은 효과를 보였다. Glucose, sucrose, yeast extract의 최적농도를 알아보기 위하여 central composite design을 실시하였으며, 최적농도는 glucose 10.73 g/L, sucrose 3.98 g/L, yeast extract 18.73 g/L로 나타났다. Plackett-Burman design에서 biomass 증가에 영향이 있는 기타 미량원소에 대한 최적농도를 조사한 결과, ammonium sulfate 1 g/L, magnesium sulfate 0.5 g/L, sodium phosphate monobasic 2 g/L, sodium phosphate dibasic 2 g/L로 나타났으며, 최종 최적화된 배지 제조 시 pH는 6.10으로 최적 pH 조건과도 일치하였다. 최적화된 배지 3.5 L를 함유한 5 L jar fermenter에서의 배양결과, SRCM101388은 DO가 낮은 rpm에서 DO 감소가 더 빠르게 나타났다. 최대 생균수는 150 rpm, 0.5 vvm, pH 6.0, 28℃ 조건에서 18시간 배양 시 2.53± 0.12×109 CFU/mL로 나타났다.

In this study, culture conditions were optimized to confirm the feasibility of Acetobacter pasteurianus as a starter for fermentation vinegar. Acetobacter pasteurianus strain can be used as a food ingredient. The optimal temperature and pH conditions of the selected Acetobacter pasteurianus SRCM101388 were 28℃ and pH 6.00, respectively. The response surface methodology (RSM) was used to optimize the composition of the medium, and Plackett-Burman design (PBD) was used to obtain the effective selection of culture medium, resulting in that glucose, sucrose, and yeast extract had the highest effect on increasing biomass. The optimal concentration, which was performed by central composite design (CCD), were determined to be 10.73 g/L of glucose, 3.98 g/L of sucrose, and 18.73 g/L of yeast extract, respectively. The optimal concentrations of trace elements for the production of biomass were found to be 1 g/L of ammonium sulfate, 0.5 g/L of magnesium sulfate, 2 g/L of sodium phosphate monobasic, 2 g/L of sodium phosphate dibasic, and the final optimized medium was pH 6.10. When incubated in a 5 L jar fermenter, the SRCM101388 strain showed a faster-dissolved oxygen (DO) reduction at a lower agitation rate (rpm), and it was able to grow even at reduced DO level when aeration was maintained. The amount of final biomass produced was 2.53±0.12×109 CFU/mL (9.40±0.02 log CFU/mL) when incubated for 18 hours at 150 rpm, 0.5 vvm, pH 6.0, and 28℃.

키워드

참고문헌

  1. Adebayo-Tayo B, Akintunde M, Sanusi J. Effect of different fruit juice media on bacterial cellulose production by Acinetobacter sp. BAN1 and Acetobacter pasteurianus PW1. J Adv Biol Biotechnol, 14, 1-9 (2017)
  2. Andres-Barrao C, Saad MM, Chappuis ML, Boffa M, Perret X, Perez RO, Barja F. Proteome analysis of Acetobacter pasteurianus during acetic acid fermentation. J Proteomics, 75, 1701-1717 (2012) https://doi.org/10.1016/j.jprot.2011.11.027
  3. Azuma Y, Hosoyama A, Matsutani M, Furuya N, Horikawa H, Harada T, Hirakawa H, Kuhara S, Matsushita K, Fujita N, Shirai M. Whole-genome analyses reveal genetic instability of Acetobacter pasteurianus. Nucleic Acids Res, 37, 5768- 5783 (2009) https://doi.org/10.1093/nar/gkp612
  4. Bae S, Shoda M. Bacterial cellulose production by fed-batch fermentation in molasses medium. Biotechnol Prog, 20, 1366-1371 (2004) https://doi.org/10.1021/bp0498490
  5. Bang KH, Kim CW, Kim CH. Isolation of an acetic acid bacterium Acetobacter pasteurianus CK-1 and its fermentation characteristics. J Life Sci, 32, 119-124 (2022)
  6. Baek CH, Baek SY, Lee SH, Kang JE, Choi HS, Kim JH, Yeo SH. Characterization of Acetobacter sp. strain CV1 isolated from a fermented vinegar. Microbiol Biotechnol Lett, 43, 126-133 (2015) https://doi.org/10.4014/mbl.1505.05003
  7. Budak NH, Aykin E, Seydim AC, Greene AK, Guzel-Seydim ZB. Functional properties of vinegar. J Food Sci, 79, 757-764 (2014)
  8. Chae MK, Choi JS, Moon HB, Park JB, Choi KT, Yeo SH, Park HD. Development of air-blast dried yeast starter for 'Yakju' and monitoring on its fermentation characteristics. Korean J Food Preserv, 28, 810-819 (2021)
  9. Dayal MS, Goswami N, Sahai A, Jain V, Mathur G, Mathur A. Effect of media components on cell growth and bacterial cellulose production from Acetobacter aceti MTCC 2623. Carbohydr Polym, 94, 12-16 (2013) https://doi.org/10.1016/j.carbpol.2013.01.018
  10. Drysdale GS, Fleet GH. The growth and survival of acetic acid bacteria in wines at different concentrations of oxygen. Am J Enol Vitic, 40, 99-105 (1989) https://doi.org/10.5344/ajev.1989.40.2.99
  11. Gomes FP, Silva NH, Trovatti E, Serafim LS, Duarte MF, Silvestre AJ, Neto CP, Freire CS. Production of bacterial cellulose by Gluconacetobacter sacchari using dry olive mill residue. Biomass Bioenergy, 55, 205-211 (2013)
  12. Ha G, Yang HJ, Jeong SJ, Ryu MS, Kim J, Yang H, Shin SJ, Im S, Seo JW, Jeong SY, Jeong DY. Medium optimization for enhanced growth of Bacillus subtilis SRCM102046 possessing antibacterial activity using response-surface methodology. Korean J Food Preserv, 25, 613-624 (2018) https://doi.org/10.11002/kjfp.2018.25.5.613
  13. Hromatka O, Ebner H. Investigations of the vinegar fermentations VIII. Further knowledge on interruption of aeration. Enzymologia, 25, 37-51 (1962)
  14. Jeong DW, Lee JH. Safety assessment of starters for traditional Korean fermented foods. Korean J Microbiol Biotechnol, 42, 1-10 (2014) https://doi.org/10.4014/kjmb.1401.01005
  15. Lee EJ, Hurh BS, Lee IH. Development of ready-to-use starters for the production of doenjang. Microbiol Biotechnol Lett, 47, 234-241 (2019) https://doi.org/10.4014/mbl.1903.03001
  16. Mathiazhakan K, Ayed D, Tyagi RD. Kinetics of lipid production at lab scale fermenters by a new isolate of Yarrowia lipolytica SKY7. Bioresour Technol, 221, 234-240 (2016) https://doi.org/10.1016/j.biortech.2016.09.015
  17. Menzel U, Gottschalk G. The internal pH of Acetobacterium wieringae and Acetobacter aceti during growth and production of acetic acid. Arch Microbiol, 143, 47-51 (1985) https://doi.org/10.1007/BF00414767
  18. Mesa MM, Caro I, Cantero D. Viability reduction of Acetobacter aceti due to the absence of oxygen in submerged cultures. Biotechnol Prog, 12, 709-712 (1996) https://doi.org/10.1021/bp960032j
  19. Muller JL, Protti KL, Machado MD, Lacerda LL, Bresolin TM, Podlech PS. Comparison of Saccharomyces boulardii growth in an air-lift fermentor and in a shaker. Food Sci Technol, 27, 688-693 (2007) https://doi.org/10.1590/S0101-20612007000400003
  20. Park KS, Chang DS, Cho HR, Park UY. Investigation of the cultural characteristics of high concentration. J Korean Soc Food Nufr, 23, 666-670 (1994)
  21. Park MH, Lyu DK, Ryu CH. Characteristics of high acidity producing acetic acid bacteria isolated from industrial vinegar fermentation. J Korean Soc Food Sci Nutr, 31, 394-398 (2002)
  22. Sari AM, Budianto FA, Nursiwi A, Sanjaya AP, Utami R, Zaman MZ. Study of Acetobacter xylinum FNCC 0001 fermentation kinetics using artificial media containing various carbon and nitrogen concentrations. IOP Conf Ser: Earth Environ Sci, 828, 012004 (2021)
  23. Sunda WG, Price NM, Morel FM. Trace metal ion buffers and their use in culture studies. Algal Culturing Techniques, 4, 35-63 (2005)
  24. Yang HJ, Jeong SJ, Jeong SY, Heo JH, Choi NS, Jeong DY. Screening of non-biogenic-amine-producing Bacillus subtilis and medium optimization for improving biomass by the response surface methodology. J Life Sci, 5, 571-583 (2016)
  25. Yin H, Zhang R, Xia M, Bai X, Mou J, Zheng Y, Wang M. Effect of aspartic acid and glutamate on metabolism and acid stress resistance of Acetobacter pasteurianus. Microb Cell fact, 16, 1-14 (2017) https://doi.org/10.1186/s12934-016-0616-2
  26. Zeng X, Small DP, Wan W. Statistical optimization of culture conditions for bacterial cellulose production by Acetobacter xylinum BPR 2001 from maple syrup. Carbohydr Polym, 85, 506-513 (2011) https://doi.org/10.1016/j.carbpol.2011.02.034
  27. Zhang H, Chen C, Zhu CH, Sun D. Production of bacterial cellulose by Acetobacter xylinum: Effects of carbon/nitrogen-ratio on cell growth and metabolite production. Cellulose Chem Technol, 50, 997-1003 (2016)