DOI QR코드

DOI QR Code

품종별 마늘의 품질 특성 및 흑마늘 숙성 중 품질 변화

Physicochemical characteristics of domestic garlic by varieties and their quality changes during aging of black garlic

  • 투고 : 2023.02.27
  • 심사 : 2023.06.19
  • 발행 : 2023.06.30

초록

우리나라 대표적인 남도, 대서, 홍산과 의성 마늘의 품질특성을 비교하고 각각의 마늘을 흑마늘로 숙성하면서 유효물질의 변화를 조사하였다. 흑마늘은 60-80℃의 범위에서 15일간 숙성하면서 5일 단위로 시료를 취하였다. 총페놀화합물은 생마늘에서 85.2-109.7 mg GAE/100 g이던 것이 숙성기간이 증가함에 따라 증가하였고, 생마늘과 제조된 흑마늘 모두 홍산마늘이 가장 높았다. 알린 함량은 생마늘에서 848.3-1,087.5 mg/100 g이던 것이 숙성 5일에 7.3-20.6 mg/100 g으로 유의하게 감소한 후 더 감소하였다. 생마늘의 GSAC(γ-glutamyl-S-allyl-cysteine)와 GS1PC (γ-glutamyl-S-1-Propenyl-l-Cysteine) 함량은 202.1-541.0 mg/100 g, 311.1-474.3 mg/100 g이었으며 숙성 동안 점차 감소하였다. 한편, SAC(S-allyl-cysteine) 및 S1PC (S-1-Propenyl-l-Cysteine) 함량은 4종 모두 생마늘일 때 매우 낮았으나 숙성 5일 차에 크게 증가한 후 감소하는 경향을 보였다. 숙성 5일째 SAC 함량은 남도마늘이 208.0 mg/100 g으로 다른 시료에 비해 유의적으로 높았고, S1PC는 의성마늘이 66.2 mg/100 g으로 유의적으로 높았다. 이는 생마늘에서 SAC 및 S1PC의 전구물질인 GSAC와 GS1PC가 높았던 시료가 흑마늘 숙성 후에도 높은 경향이었다. 따라서 마늘은 품종에 따라 유효물질의 함량에 차이가 있고 숙성 후의 주요 화합물의 변화에도 유의적인 차이가 있을 것으로 추측되어 향후 기능성 식품 연구의 기초자료로 활용될 것으로 판단된다.

In this study, the quality characteristics of the representative domestic garlic varieties in Korea (Namdo, Daeseo, Hongsan, and Uiseong garlic) were compared and their changes according to the aging process of black garlic were investigated. Each garlic sample was aged for 15 days according to the manufacturing process of black garlic. The total phenolic compound contents were 85.2-109.7 mg GAE/100 g in raw garlic samples, which increased with the aging period, and Hongsan garlic showed the highest content in both raw and aged black garlic. The content of alliin was 848.3-1,087.5 mg/100 g in raw garlic samples, and it decreased significantly on the 5th day (7.3-20.6 mg/100 g) in aged garlic. The contents of GSAC (γ-glutamyl-S-allyl-cysteine) and GS1PC (γ-glutamyl-S-1-propenyl-l-cysteine) in raw garlic samples were 202.1-541.0 mg/100 g and 311.1-474.3 mg/100 g, respectively, but gradually decreased during the aging process. On the other hand, the SAC (S-allyl-cysteine) and S1PC (S-1-propenyll-cysteine) contents of raw garlic were very low in all four varieties, but they were highest on the 5th day of aging and tended to decrease thereafter. On the 5th day of aging, the SAC content of Namdo garlic (208.0 mg/100 g) was highest (p<0.05), and S1PC content was significantly higher in Uiseong garlic (66.2 mg/100 g) than the others.

키워드

참고문헌

  1. Ahn SJ, Lee A, Min SS, In S, Kim E, Kim HJ. Comparison of physicochemical characteristics of garlic produced from South Korea and China. J Food Sci, 84, 1806-1811 (2019) https://doi.org/10.1111/1750-3841.14684
  2. Ahn YK, Yoon MK. Effect of short day length and temperature control on garlic florogenesis. Korean J Hortic Sci Technol, 28, 180-185 (2010)
  3. Bae SE, Cho SY, Won YD, Lee SH, Park HJ. A comparative study of the different analytical methods for analysis of S-allyl-cysteine in black garlic by HPLC. LWT-Food Sci Technol, 46, 532-535 (2012) https://doi.org/10.1016/j.lwt.2011.11.013
  4. Block E, Naganathan S, Putman D, Zhao SH. Allium chemistry: HPLC analysis of thiosulfinates from onion, garlic, wild garlic (Ramsons), leek, scallion, shallot, elephant (greek-heated) garlic, chive, and Chinese chive. Uniquely high allyl to methyl ratios in some garlic samples. J Agric Food Chem, 40, 2418-2430 (1992) https://doi.org/10.1021/jf00024a017
  5. Choi DJ, Lee SJ, Kang MJ, Cho HS, Sung NJ, Shin JH. Physicochemical characteristics of black garlic (Allium sativum L.). J Korean Soc Food Sci Nutr, 37, 465-471 (2008) https://doi.org/10.3746/jkfn.2008.37.4.465
  6. Etoh T, Ogura H. Peroxidase isozymes in the leaves of various clones of garlic, Allium sativum L. Mem Fac Agri Kagoshima Univ, 17, 71-77 (1981)
  7. Folin O, Denis W. A colorimetric method for the determination of phenols (and phenol derivatives) in urine. J Biol Chem, 22, 305-308 (1915) https://doi.org/10.1016/S0021-9258(18)87648-7
  8. Fujii T, Matsutomo T, Kodera Y. Changes of S-allylmercaptocysteine and γ-glutamyl-S-allylmercaptocysteine contents and their putative production mechanisms in garlic extract during the aging process. J Agric Food Chem, 66, 10506-10512 (2018) https://doi.org/10.1021/acs.jafc.8b02541
  9. Han JW. Effect of genotype and environment on agricultural characteristics and alliin in garlic. MS Thesis, Konkuk University, Korea, p 28-29 (2019)
  10. Harn C, Choung D, Kim B. Studies on the karyotypes of Allium sativum. J Korean Soc Hort Sci, 2, 58-67 (1996)
  11. Hwang JM. Genetic divergence and classification of garlic cultivars by multivariate analysis. J Korean Soc Hort Sci, 33, 257-264 (1993)
  12. Hyun SH, Kim MB, Lim SB. Physiological activities of garlic extracts from Daejeong Jeju and major cultivating areas in Korea. J Korean Soc Food Sci Nutr, 37, 1542-1547 (2008) https://doi.org/10.3746/jkfn.2008.37.12.1542
  13. Ichikawa M, Ide N, Yoshida J, Yamaguchi H, Ono K. Determination of seven organosulfur compounds in garlic by high-performance liquid chromatography. J Agric Food Chem, 54, 1535-1540 (2006) https://doi.org/10.1021/jf051742k
  14. Jeong YS, Hwang KA, Kim GR, Song J, Noh GM, Hwang IG. Effects of the aging conditions on the quality characteristics of garlic. Korean J Food Nutr, 28, 745-751 (2015) https://doi.org/10.9799/ksfan.2015.28.5.745
  15. Kang OJ. Physicochemical characteristics of black garlic after different thermal processing steps. Prev Nutr Food Sci, 21, 348-354 (2016) https://doi.org/10.3746/pnf.2016.21.4.348
  16. Karina LRR, Antonia M, Agustin O, Mar V. Physicochemical changes and sensorial properties during black garlic elaboration: A review. Trends Food Sci Technol, 88, 459-467 (2019) https://doi.org/10.1016/j.tifs.2019.04.016
  17. Kim JS, Ra JH. Comparison of phytochemical composition and physiological activity of 'Hongsan' and 'Hansan', a new variety of garlic. Korea J Food Sci Technol, 51, 147-151 (2019)
  18. Kim JS, Ra JH, Hyun HN. Comparison of biochemical composition and antimicrobial activity of southern-type garlic grown in the eastern and western region of Jeju. Kor J Hort Sci Technol, 33, 763-771 (2015)
  19. Lancaster JE, Shaw ML. γ-Glutamyl peptides in the biosynthesis of S-alk(en)yl-L-cysteine sulphoxides (flavour precursors) in Allium. Phytochemistry 28, 455-460 (1989) https://doi.org/10.1016/0031-9422(89)80031-7
  20. Lawson LD. The Composition and Chemistry of Garlic Cloves and Processed Garlic. Koch HP, Lawson LD (Editors), William & Wilkins, Baltimore, MD, USA, p 37-107 (1996)
  21. Lawson LD. Garlic: A review of its medicinal effects and indicated active compounds. Blood, 179, 62 (1998)
  22. Lawson LD, Wang ZJ, Hughes BG. γ-Glutamyl-S-alkylcysteines in garlic and other Allium spp.: Precursors of age-dependent trans-1-propenyl thiosulfinates. J Nat Prod, 54, 436-444 (1991) https://doi.org/10.1021/np50074a014
  23. Lee HS. Effects on antioxidative capacity and lipid improvement of black garlic according to different aging periods. Ph D Thesis, Kyungsung University, Korea, p 28-29 (2010)
  24. Lee JS, Pak YK, Kwon YH, Chang WB, Lee HD. Classification of garlic germplasms based on agronomic characteristics and multivariative analysis. Korean J Plant Res, 34, 79-88 (2021)
  25. Lee YK, Sin HM, Woo KS, Hwang IG, Kand TS, Jeong HS. The relationship between functional quality of garlic and soil composition. Korea J Food Sci Technol, 40, 31-345 (2008)
  26. Liu Z, Li M, Chen K, Yang J, Chen R, Wang T, Liu J, Yang W, Ye Z. S-Allylcysteine induces cell cycle arrest and apoptosis in androgen-independent human prostate cancer cells. Mol Med Rep, 5, 439-443 (2012)
  27. Matsutomo T, Ushijima M, Kodera Y, Nakamoto M, Takashima M, Morihara N, Tamura K. Metabolomic study on the antihypertensive effect of S-1-propenylcysteine in spontaneously hypertensive rats using liquid chromatography coupled with quadrupole-orbitrap mass spectrometry. J Chromatogr B, 1046, 147-155 (2017) https://doi.org/10.1016/j.jchromb.2017.01.029
  28. Nakagawa S, Kasuga S Matsuura H. Prevention of liver damage by aged garlic extract and its components in mice. Phytotherapy Res, 3, 50-53 (1989) https://doi.org/10.1002/ptr.2650030203
  29. Nishiyama N, Moriguchi T, Morihara N, Saito H. Ameliorative effect of S-allylcysteine, a major thioallyl constituent in aged garlic extract, on learning deficits in senescence accelerated mice. J Nutr, 131, 1093S-1095S (2001) https://doi.org/10.1093/jn/131.3.1093S
  30. Numagami Y, Ohnishi ST. S-Allylcysteine inhibits free radical production, lipid peroxidation and neuronal damage in rat brain ischemia. J Nutr, 131, 1100-1105 (2001)
  31. Park MH, Kim JP, Kwon DJ. Physico-chemical characteristics of components and their effects on freezing point depression of garlic bulbs. Korean J Food Sci Technol, 20, 205-212 (1988)
  32. Park YK, Kang YH. Enzymatic maceration of vegetables with cell separating enzymes. Korean J Postharvest Sci Technol, 7, 184-188 (2000)
  33. Pooler MR, Simon PW. Characterization and classification of isozyme and morphological variation in a diverse collection of garlic clones. Euphytica, 68, 121-130 (1993) https://doi.org/10.1007/BF00024161
  34. Rural Development Administration (RDA). Garlic. Avaliable from: http://www.nongsaro.go.kr. Accessed Dec, 16, 2022.
  35. Se JH, Kim JM, An SY, Cho JG, Kim JM, Park HY. Effect of Alliin on vascular functions. J Life Sci, 19, 976-982 (2009) https://doi.org/10.5352/JLS.2009.19.7.976
  36. Shaykewich CF. An appraisal of cereal crop phenology modelling. Can J Plant Sci, 75, 329-341 (1995) https://doi.org/10.4141/cjps95-057
  37. Shin DB, Hawer WD, Koo MS, Kim YS, Jeun HS. Quality Evaluation of Garlic from Different Cultivation Area. Korea Food Research Institute, p 1470-0110 (2001)
  38. Shin DB, Seog HM, Kim JH, Lee YC. Flavor composition of garlic from different area. Korean J Food Sci Technol, 31, 293-300 (1999)
  39. Suzuki JI, Miki S, Ushijima M, Kodera Y. Regulation of immune response by S-1-propenylcysteine through autophagy-mediated protein degradation. Exp Ther Med, 19, 1570-1573 (2020)
  40. Tak HM, Kang MJ, Kim KM, Kang DW, Han SK, Shin JH. Anti-inflammatory activities of fermented black garlic. J Korean Soc Food Sci Nutr, 43, 1527-1534 (2014) https://doi.org/10.3746/jkfn.2014.43.10.1527
  41. Toledano Medina M, Angeles, Perez-Aparicio J, Moreno-Rojas R, Merinas-Amo T. Evolution of some physicochemical and antioxidant properties of black garlic whole bulbs and peeled cloves. Food Chem, 199, 135-139 (2016) https://doi.org/10.1016/j.foodchem.2015.11.128
  42. Ushijima M, Kunimura K, Suzuki JI. S-1-Propenylcysteine, a sulfur compound in aged garlic extract, alleviates cold-induced reduction in peripheral blood flow in rat via activation of the AMPK/eNOS/NO pathway. Exp Ther Med, 20, 2815-2821 (2020)
  43. Wang X, Jiao F, Wang QW, Wang J, Yang K, Hu RR, Wang YS. Aged black garlic extract induces inhibition of gastric cancer cell growth in vitro and in vivo. Mole Med Rep, 5, 66-72 (2012)
  44. Welch C, Wuarin L, Sidell N. Antiprolificative effect of the garlic compound S-allylcysteine on human neuroblastoma cell in vitro. Cancer Lett, 63, 211-219 (1992) https://doi.org/10.1016/0304-3835(92)90263-U
  45. Wi SH, Moon KH, Song EY, Son IC, Oh SJ, Cho YY. Growth and fresh bulb weight model in harvest time of southern type garlic Var. 'Namdo' based on temperature. J Bio Env Con, 26, 13-18 (2017) https://doi.org/10.12791/KSBEC.2017.26.1.13
  46. Woo HJ, Cha GS, Kang MJ, Kyung KH. Assessment of standardization of domestic commercial black garlic extract for S-allyl-L-cysteine and S-1-propenyl-L-cysteine. Food Sci Biotechnol, 23, 253-260 (2022)
  47. Xiong F, Dai CH, Hou FR. Zhu PP, He RH, Ma HL. Study on the ageing method and antioxidant activity of black garlic residues. Czech J Food Sci, 36, 88-97 (2018) https://doi.org/10.17221/420/2016-CJFS
  48. Zhang X, Li N, Lu X, Liu P, Qiao X. Effects of temperature on the quality of black garlic. J Sci Food Agri, 96, 2366-2372 (2016) https://doi.org/10.1002/jsfa.7351