DOI QR코드

DOI QR Code

스마트팜 재배 병풀의 triterpenes 정량 및 각질형성세포 활성화 효과

Quantification of triterpenes in Centella asiatica cultivated in a smart farm, and their effect on keratinocyte activation

  • 박진홍 (록야 주식회사, 그린바이오연구소) ;
  • 조성민 (록야 주식회사, 그린바이오연구소) ;
  • 이다희 (록야 주식회사, 그린바이오연구소) ;
  • 박영민 (록야 주식회사, 그린바이오연구소) ;
  • 장환봉 (록야 주식회사, 그린바이오연구소) ;
  • 강태진 (삼육대학교 약학대학) ;
  • 이기만 (록야 주식회사, 그린바이오연구소)
  • 투고 : 2023.04.04
  • 심사 : 2023.06.08
  • 발행 : 2023.06.30

초록

본 연구에서는 제주도에서 자생한 병풀을 수집해 스마트팜과 노지에서 재배하고 이를 이용하여 주요성분 및 각질형성세포 활성화에 미치는 영향을 확인 및 비교하였다. 스마트팜 재배 병풀과 노지 재배 병풀의 유전자 확인을 통한 종 분석을 위해, 핵 속의 ITS DNA와 엽록체의 psbA-H DNA를 증폭하여 염기서열을 분석한 후 NCBI 유전자 은행에서 보고된 식물들의 DNA와 비교하였다. 스마트팜 재배 병풀과 노지 재배 병풀의 ITS DNA 염기서열은 유전자 은행의 MH768338.1번 Centella asiatica와 일치하고 엽록체 psbA-H DNA 또한 유전자 은행의 JQ425422.1번 C. asiatica와 일치하였다. 스마트팜 재배 병풀추출물(SEE)과 노지 재배 병풀추출물(FEE)의 triterpene은 HPLC에 의해 분석되었으며, SEE의 madecassoside, asiaticoside, madecassic acid, asiatic acid 함량은 각각 59.31±0.94 mg/g, 46.38±2.26 mg/g, 6.21±1.47 mg/g, 7.04±1.93 mg/g으로 분석되었다. 반면, FEE는 각각 24.38±1.31 mg/g, 21.28±1.44 mg/g, 3.11±1.05 mg/g, 5.40±1.26 mg/g으로 측정되어 SEE가 FEE보다 더 높은 triterpene을 갖는 것이 확인되었다. 사람 각질형성세포에 대한 SEE와 FEE의 독성은 실험된 농도 내에서 관찰되지 않았으며, 스크래치가 유발된 세포 내 회복은 SEE가 FEE보다 더 높은 회복능을 보였다. 따라서, 본 실험 결과 triterpene 함량이 더 높은 스마트팜 재배 병풀이 건강기능식품 소재로서 더 효과적이라고 판단된다.

This study aimed to compare the bioactive compounds in Centella asiatica (C. asiatica) cultivated in a smart farm and a field and their effects on human keratinocyte cells. C. asiatica was collected in Jeju-do, Korea, and cultured in a smart farm and a field. The main bioactive compounds in the two differentially cultured C. asiatica were identified, and their activation in keratinocytes were assessed. Amplification and sequencing of the internal transcribed spacer (ITS) DNA in the nucleus and psbA-H DNA in the chloroplast were performed for species analysis. A comparison of DNA of plants reported in the NCBI GenBank was performed. The ITS DNA and psbA-H DNA sequences of C. asiatica cultivated in a smart farm and a field were consistent with No. MH768338.1 and No. JQ425422.1, respectively. Analysis of the triterpenes was performed using high performance liquid chromatography (HPLC) and as a result, C. asiatica cultured in a smart farm had more triterpenes than those cultured in a field. The effects of C. asiatica grown in a smart farm on cell proliferation and scratch recovery in HaCaT cells were greater than those grown in a field. These results suggest that C. asiatica cultivated in a smart farm can be effectively utilized as a health functional food.

키워드

과제정보

본 연구는 2022년 중소벤처기업부의 기술개발사업(과제번호: S3288966) 지원에 의해 이루어진 것으로 이에 감사드립니다.

참고문헌

  1. Azis HA, Taher M, Ahmed AS, Sulaiman WMAW, Susanti D, Chowdhury SR, Zakaria ZA. In vitro and in vivo wound healing studies of methanolic fraction of Centella asiatica extract. S Afr J Bot, 108, 163-174 (2017) https://doi.org/10.1016/j.sajb.2016.10.022
  2. Choi JN, Oh MW, Lee HJ, Lee JH, Jeong JT, Lee YJ, Chang JK, Park CG. Comparison of growth characterisitics, asiaticoside content and antioxidant activities of Centella asiatica (L.) Urb. Korean J Plant Res, 34, 44-51 (2021)
  3. Fouche M, Willers C, Hamman S, Malherbe C, Steenekamp J. Wound healing effects of Aloe muth-muth: In vitro investigations using immortalized human keratinocytes (HaCaT). Biology, 9, 350 (2020)
  4. Gohil KJ, Patel JA, Gajjar AK. Pharmacological review on Centella asiatica: A potential herbal cure-all. Indian J Pharm Sci, 72, 546-556 (2010) https://doi.org/10.4103/0250-474X.78519
  5. Griesbach RJ, Semeniuk P, Roh SM, Lawson RH. Tissue culture in the improvement of Eustoma. Hortic Sci, 23, 790-791 (1988)
  6. Ha JH, Kwon MC, Kim Y, Jeong SS, Jeong MH, Hwang B, Lee HY. Enhancement of immunomodulatory of Centella asiatica L. Urban with edible polymer through nano-encapsulation process. Korean J Med Crop Sci, 17, 257-265 (2009)
  7. Harun NH, Septama AW, Ahmad WANW, Suppian R. The potential of Centella asiatica (Linn.) Urban as an anti-microbial and immunomodulator agent: A review. Nat Prod Sci, 25, 92-102 (2019) https://doi.org/10.20307/nps.2019.25.2.92
  8. Hashim P, Sidek H, Helan MHM, Sabery A, Palanisamy UD, Ilham M. Triterpene composition and bioactivities of Centella asiatica. Molecules, 16, 1310-1322 (2011) https://doi.org/10.3390/molecules16021310
  9. Hengjumrut P, Aunkunwithaya T, Tantisira MH, Tantisira B, Khemawoot, P. Comparative pharmacokinetics between madecassoside and asiaticoside presented in a standardised extract of Centella asiatica, ECa 233 and their respective pure compound given separately in rats. Xenobiotica, 48, 18-27 (2018) https://doi.org/10.1080/00498254.2016.1273562
  10. James JT, Duber IA. Pentacyclic triterpenoids from the medicinal herb, Centella asiatica (L.) Urban. Molecules, 14, 3922-3941 (2009) https://doi.org/10.3390/molecules14103922
  11. Kim H, Kim OH, Lee HJ. Grain cultivation traceability system using ICT for smart agriculture. KIIECT, 13, 389-398 (2020)
  12. Kotian SR, Bhat KMR, Padma D, Pai KSR. Influence of traditional medicines on the activity of keratinocytes in wound healing: An in-vitro study. Anat Cell Biol, 52, 324-332 (2019) https://doi.org/10.5115/acb.19.009
  13. Lee JK, Seol BM. Intelligent smart farm a study on productivity: Focused on tomato farm households. AP JBVE, 14, 185-199 (2019)
  14. Lee J, Myung CH, Lee JE, Jo MR, Kim HS, Lee NY, Woo H, You J, Jo H, Hwang JS. Anti-inflammatory and moisturizing effect of Centella extracts fermented in Jeju lava water. J Soc Cosmet Sci, 45, 363-372 (2019)
  15. National Institute of Biological Resource (NIBR). DNA Barcode System for Korean Indigenous Plant Species (VII). National Institute of Biological Resource, Incheon, Korea, p 1-2 (2021)
  16. Nizamutdinova IT, Kim YM, Chung JI, Shin SC, Jeong YK, Seo HG, Lee JH, Chang KC, Kim HJ. Anthocyanins from black soybean seed coats stimulate wound healing in fibroblasts and keratinocytes and prevent inflammation in endothelial cells. Food Chem Toxicol, 47, 2806-2812 (2009) https://doi.org/10.1016/j.fct.2009.08.016
  17. Oh S, Park S, Lee S, Park Y, Jang KI, Yu KW, Kim DI, Shin H. Comparison of growth characteristics and physiological activity of two Centella asiatica cultivars in greenhouse soil culture. J Bio-Env Con, 30, 351-358 (2021) https://doi.org/10.12791/KSBEC.2021.30.4.351
  18. Omar N, Lokanathan Y, Razi ZRM, Idrus RBH. The effects of Centella asiatica (L.) Urban on neural differentiation of human mesenchymal stem cells in vitro. BMC Complement Altern Med, 19, 167 (2019)
  19. Piscatelli SJ, Michaels BM, Gregory P, Jennings RW, Longaker MT, Harrison MR, Siebert JW. Fetal fibroblast contraction of collagen matrices in vitro: The effects of epidermal growth factor and transforming growth factor-β. Ann Plast Surg, 33, 38-45 (1994)
  20. Reinke JM, Sorg H. Wound repair and regeneration. Eur Surg Res, 48, 35-43 (2012) https://doi.org/10.1159/000339613
  21. Seong E, Heo H, Oh S, Kim D, Jang KI, Lee J. Optimization of ultrasound-assisted extraction for triterpene compounds from Centella asiatica using response surface methodology. J Korean Soc Food Nutr, 50, 294-300 (2021)
  22. Shin HY, Kim H, Jeong EJ, Kim JE, Lee KH, Bae YJ, Yu KW. Bioactive compounds, anti-oxidant activities and anti-inflammatory activities of solvent extracts from Centella asiatica cultured in Chungju. Korean J Food Nutr, 33, 692-701 (2020)
  23. Singer AJ, Clark RA. Cutaneous wound healing. N Engl J Med, 341, 738-746 (1999) https://doi.org/10.1056/NEJM199909023411006
  24. World Health Organization (WHO). WHO Monographs on Selected Medicinal Plants (Vol. 1). World Health Organization, Geneva, Switzerland, p 77-85 (1999)
  25. Yeo UH, Lee IB, Kwon KS, Ha T, Park SJ, Kim RW, Lee SY. Analysis of research trend and core technologies based on ICT to materialize smart-farm. J Bio-Env Con, 25, 30-41 (2016) https://doi.org/10.12791/KSBEC.2016.25.1.30