DOI QR코드

DOI QR Code

Shelf-life prediction of fresh ginseng packaged with plastic films based on a kinetic model and multivariate accelerated shelf-life testing

  • Jong-Jin Park (Food Safety and Distribution Research Group, Korea Food Research Institute) ;
  • Jeong-Hee Choi (Food Safety and Distribution Research Group, Korea Food Research Institute) ;
  • Kee-Jai Park (Food Safety and Distribution Research Group, Korea Food Research Institute) ;
  • Jeong-Seok Cho (Food Safety and Distribution Research Group, Korea Food Research Institute) ;
  • Dae-Yong Yun (Food Safety and Distribution Research Group, Korea Food Research Institute) ;
  • Jeong-Ho Lim (Food Safety and Distribution Research Group, Korea Food Research Institute)
  • Received : 2023.05.31
  • Accepted : 2023.08.03
  • Published : 2023.08.30

Abstract

The purpose of this study was to monitor changes in the quality of ginseng and predict its shelf-life. As the storage period of ginseng increased, some quality indicators, such as water-soluble pectin (WSP), CDTA-soluble pectin (CSP), cellulose, weight loss, and microbial growth increased, while others (Na2CO3-soluble pectin/NSP, hemicellulose, starch, and firmness) decreased. Principal component analysis (PCA) was performed using the quality attribute data and the principal component 1 (PC1) scores extracted from the PCA results were applied to the multivariate analysis. The reaction rate at different temperatures and the temperature dependence of the reaction rate were determined using kinetic and Arrhenius models, respectively. Among the kinetic models, zeroth-order models with cellulose and a PC1 score provided an adequate fit for reaction rate estimation. Hence, the prediction model was constructed by applying the cellulose and PC1 scores to the zeroth-order kinetic and Arrhenius models. The prediction model with PC1 score showed higher R2 values (0.877-0.919) than those of cellulose (0.797-0.863), indicating that multivariate analysis using PC1 score is more accurate for the shelf-life prediction of ginseng. The predicted shelf-life using the multivariate accelerated shelf-life test at 5, 20, and 35℃ was 40, 16, and 7 days, respectively.

Keywords

Acknowledgement

This work was supported by Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, and Forestry (IPET) through High Value-Added Food Technology Development Program, funded by Ministry of Agriculture, Food and Rural Affairs (MAFRA) (321049-5).

References

  1. Blumenkrantz N, Asboe-Hansen G. New method for quantitative determination of uronic acids. Anal Biochem, 54, 484-489 (1973) https://doi.org/10.1016/0003-2697(73)90377-1
  2. Cao S, Zheng Y, Wang K, Rui H, Tang S. Effect of 1-methylcyclopropene treatment on chilling injury, fatty acid and cell wall polysaccharide composition in loquat fruit. J Agric Food Chem, 57, 8439-8443 (2009) https://doi.org/10.1021/jf902114y
  3. Chang EH, Bae YS, Lee JH, Shin IS, Choi JW. Quality loss of spring-harvested fresh ginseng under simulated export and distribution conditions. Korean J Food Preserv, 25, 641-650 (2018) https://doi.org/10.11002/kjfp.2018.25.6.641
  4. Chea S, Yu DJ, Park J, Oh HD, Chung SW, Lee HJ. Fruit softening correlates with enzymatic and compositional changes in fruit cell wall during ripening in 'bluecrop' highbush blueberries. Sci Hortic, 245, 163-170 (2019)
  5. Cho KM, Hong SY, Lee SM, Kim YH, Kahng GG, Lim YP, Kim H, Yun HD. Endophytic bacterial communities in ginseng and their antifungal activity against pathogens. Microb Ecol, 54, 341-351 (2007) https://doi.org/10.1007/s00248-007-9208-3
  6. Corradini MG, Peleg M. Prediction of vitamins loss during non-isothermal heat processes and storage with non-linear kinetic models. Trends Food Sci Technol, 17, 24-34 (2006)
  7. Dubois M, Gilles KA, Hamilton JK, Rebers PT, Smith F. Colorimetric method for determination of sugars and related substances. Anal Chem, 28, 350-356 (1956) https://doi.org/10.1021/ac60111a017
  8. Fan X, Jiang W, Gong H, Yang Y, Zhang A, Liu H, Cao J, Guo F, Cui K. Cell wall polysaccharides degradation and ultrastructure modification of apricot during storage at a near freezing temperature. Food Chem, 300, 125194 (2019)
  9. Gil MM, Miller FA, Brandao TR, Silva CL. On the use of the gompertz model to predict microbial thermal inactivation under isothermal and non-isothermal conditions. Food Eng Rev, 3, 17-25 (2011) https://doi.org/10.1007/s12393-010-9032-2
  10. Hasbullah R, Ismail ER. Shelf-life prediction of citrus lemon using a multivariate accelerated shelf-life testing (maslt) approach. J Hortic Res, 30, 51-60 (2022) https://doi.org/10.2478/johr-2022-0005
  11. Holland N, Nunes FLDS, De Medeiros IUD, Lafuente MT. High-temperature conditioning induces chilling tolerance in mandarin fruit: A cell wall approach. J Sci Food Agric, 92, 3039-3045 (2012) https://doi.org/10.1002/jsfa.5721
  12. Hu W, Jiang A, Qi H. Physiological behavior and quality of fresh ginseng stored in modified atmospheres generated by several package films. JFST, 51, 3862-3869 (2014)
  13. Hu W, Xu P, Uchino T. Extending storage life of fresh ginseng by modified atmosphere packaging. J Sci Food Agric, 85, 2475-2481 (2005) https://doi.org/10.1002/jsfa.2282
  14. Huang J, Wu W, Fang X, Chen H, Han Y, Niu B, Gao H. Zizania latifolia cell wall polysaccharide metabolism and changes of related enzyme activities during postharvest storage. Foods, 11, 392 (2022)
  15. Huang L. Growth kinetics of listeria monocytogenes in broth and beef frankfurters: Determination of lag phase duration and exponential growth rate under isothermal conditions. J Food Sci, 73, E235-E242 (2008) https://doi.org/10.1111/j.1750-3841.2008.00785.x
  16. Huang L. Optimization of a new mathematical model for bacterial growth. Food Control, 32, 283-288 (2013) https://doi.org/10.1016/j.foodcont.2012.11.019
  17. Jin TZ, Huang M, Niemira BA, Cheng L. Shelf life extension of fresh ginseng roots using sanitiser washing, edible antimicrobial coating and modified atmosphere packaging. Int J Food Sci, 51, 2132-2139 (2016) https://doi.org/10.1111/ijfs.13201
  18. Kim JH, Koo NS, Kim EH, Sohn HJ. Changes in sensory characteristics and chemical constituents of raw ginseng roots individually packaged in a soft film during storage. JGR, 26, 145-150 (2002) https://doi.org/10.5142/JGR.2002.26.3.145
  19. Li Y, Ding S, Wang Y. Shelf life predictive model for postharvest shiitake mushrooms. J Food Eng, 330, 111099 (2022a)
  20. Li Y, Zhao Y, Zhang Z, He H, Shi L, Zhu X, Cui K. Near-freezing temperature storage improves shelf-life and suppresses chilling injury in postharvest apricot fruit (Prunus armeniaca L.) by regulating cell wall metabolism. Food Chem, 387, 132921 (2022b)
  21. Liu H, Zhu W, Luo N, Ji Z, Yang X. A novel method for real-time prediction of the shelf life of pork at different storage temperatures using front-face fluorescence excitation-emission matrices. Food Chem, 398, 133795 (2023)
  22. Nedwell DB. Effect of low temperature on microbial growth: Lowered affinity for substrates limits growth at low temperature. FEMS Microbiol Ecol, 30, 101-111 (1999) https://doi.org/10.1111/j.1574-6941.1999.tb00639.x
  23. Pedro AM, Ferreira MM. Multivariate accelerated shelfl-ife testing: A novel approach for determining the shelf-life of foods. J Chemometrics, 20, 76-83 (2006) https://doi.org/10.1002/cem.995
  24. Peleg M. A new look at models of the combined effect of temperature, ph, water activity, or other factors on microbial growth rate. Food Eng Rev, 14, 31-44 (2022) https://doi.org/10.1007/s12393-021-09292-x
  25. Ren YY, Sun PP, Wang XX, Zhu ZY. Degradation of cell wall polysaccharides and change of related enzyme activities with fruit softening in annona squamosa during storage. Postharvest Biol Technol, 166, 111203 (2020)
  26. Sehwag S, Upadhyay R, Das M. Optimization and multivariate accelerated shelf life testing (maslt) of a low glycemic whole jamun (Syzygium cumini L.) confection with tailored quality and functional attributes. J Food Sci Technol, 55, 4887-4900 (2018) https://doi.org/10.1007/s13197-018-3423-4
  27. Singh TP, Raigar RK, Bam J, Paul V. Predictive modeling for physicochemical and microbial quality assessment of vacuum-packed yak milk paneer under various storage temperatures. J Food Process Preserv, 46, e16114 (2022)
  28. Szymanska-Chargot M, Chylinska M, Pieczywek PM, Rosch P, Schmitt M, Popp J, Zdunek A. Raman imaging of changes in the polysaccharides distribution in the cell wall during apple fruit development and senescence. Planta, 243, 935-945 (2016) https://doi.org/10.1007/s00425-015-2456-4
  29. Taoukis P. Modelling the use of time-temperature indicators in distribution and stock rotation. Food Process Modelling, 512, 402-431 (2001) https://doi.org/10.1533/9781855736375.5.402
  30. Wang D, Yeats TH, Uluisik S, Rose JK, Seymour GB. Fruit softening: Revisiting the role of pectin. Trends Plant Sci, 23, 302-310 (2018) https://doi.org/10.1016/j.tplants.2018.01.006
  31. Wang H, Wang J, Mujumdar A, Jin X, Liu ZL, Zhang Y, Xiao HW. Effects of postharvest ripening on physicochemical properties, microstructure, cell wall polysaccharides contents (pectin, hemicellulose, cellulose) and nanostructure of kiwifruit (actinidia deliciosa). Food Hydrocoll, 118, 106808 (2021)
  32. Win NM, Yoo J, Naing AH, Kwon JG, Kang IK. 1-Methylcyclopropene (1-mcp) treatment delays modification of cell wall pectin and fruit softening in "hwangok" and "picnic" apples during cold storage. Postharvest Biol Technol, 180, 111599 (2021)
  33. Yu Q, Li X, Hu J, Wang W, Bi J. The effect of three pectin fractions variation on the browning of different dried apple products. Food Hydrocoll, 134, 108052 (2023)
  34. Yun SD, Lee SK. High CO2 controlled atmosphere storage of Korean ginseng roots. J Kor Soc Hort Sci, 46, 18-20 (2005)
  35. Zang J, Qing M, Ma Y, Chi Y, Chi Y. Shelf-life modeling for whole egg powder: Application of the general stability index and multivariate accelerated shelf-life test. J Food Eng, 340, 111313 (2023)
  36. Zhang K, Pu YY, Sun DW. Recent advances in quality preservation of postharvest mushrooms (Agaricus bisporus): A review. Trends Food Sci Technol, 78, 72-82 (2018) https://doi.org/10.1016/j.tifs.2018.05.012
  37. Zhang W, Luo Z, Wang A, Gu X, Lv Z. Kinetic models applied to quality change and shelf life prediction of kiwifruits. LWT, 138, 110610 (2021)
  38. Zhao S, Han X, Liu B, Wang S, Guan W, Wu Z, Theodorakis PE. Shelf-life prediction model of fresh-cut potato at different storage temperatures. J Food Eng, 317, 110867 (2022)
  39. Zwietering MH, Jongenburger I, Rombouts FM, Vant Riet K. Modeling of the bacterial growth curve. AEM, 56, 1875-1881 (1990) https://doi.org/10.1128/aem.56.6.1875-1881.1990
  40. Zykwinska AW, Ralet MCJ, Garnier CD, Thibault JFJ. Evidence for in vitro binding of pectin side chains to cellulose. Plant Physiol, 139, 397-407 (2005) https://doi.org/10.1104/pp.105.065912