DOI QR코드

DOI QR Code

A Study on the Photocatalytic Decomposition of Organic Dyes by Porous Polyethersulfone/TiO2 Composite Membrane

기공형 polyethersulfone/TiO2 복합체 멤브레인의 유기염료분해 반응에 대한 광촉매 특성 연구

  • Chang Hyeon, Song (Department of Polymer Engineering, Pukyong National University) ;
  • Youngeup, Jin (Department of Industrial Chemistry, Pukyong National University) ;
  • Won Ki, Lee (Department of Polymer Engineering, Pukyong National University) ;
  • Seong Il, Yoo (Department of Polymer Engineering, Pukyong National University)
  • 송창현 (부경대학교 고분자공학과) ;
  • 진영읍 (부경대학교 공업화학과) ;
  • 이원기 (부경대학교 고분자공학과) ;
  • 유성일 (부경대학교 고분자공학과)
  • Received : 2022.12.08
  • Accepted : 2023.01.09
  • Published : 2023.02.10

Abstract

Composite membranes consisting of TiO2 nanoparticles (NPs) and porous polymers have been widely utilized in photocatalytic water treatment because the composite membranes can allow an easy recovery of NPs after the photocatalytic reaction as well as the reduction of fouling in the membrane. However, the photocatalytic efficiency of the immobilized TiO2 NPs in the composite membranes has been discussed to a limited degree. In this study, we prepared polyethersulfone (PES)/TiO2 composite membranes to study the photocatalytic decomposition of organic dyes under light illumination. The decomposition kinetics of dye molecules by the PES/TiO2 composite membranes and colloidal TiO2 NPs have been compared to discuss the photocatalytic efficiency of NPs before and after their immobilization on the polymer membrane.

광촉매 기반의 수처리 공정에서 TiO2 나노입자와 기공형 고분자로 구성된 복합체 멤브레인은 광촉매 반응후 나노입자를 회수하기 용이하다는 장점과 멤브레인 파울링(fouling) 억제가 가능하다는 측면에서 다양하게 연구되어 왔다. 하지만, TiO2 나노입자가 복합체 멤브레인에 고착된 이후 나노입자의 광촉매 특성이 어떻게 변할지에 대한 연구는 상대적으로 많이 진행되지 않았다. 이러한 측면에서, 본 연구에서는 polyethersulfone (PES)/TiO2 복합체 멤브레인을 제조하고 유기염료분해 반응에 대한 광촉매 특성을 연구하였다. 복합체 멤브레인에 고착된 TiO2 나노입자의 염료분해반응 속도를 콜로이드 상에서 분산된 TiO2 나노입자와 비교함으로써 멤브레인에 고착화되기 전후의 TiO2 나노입자의 촉매 효율을 비교하였다.

Keywords

Acknowledgement

이 논문은 2022년 부경대학교 국립대학육성사업 지원비에 의하여 연구되었음. 이 논문은 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임 (NRF-2019R1A2C1086269)

References

  1. S. K. Loe, P. J. J. Alvarez, J. A. Brame, E. L. Cates, W. Choi, J. Crittenden, D. D. Dionysiou, Q. Li, G. Li-Puma, X. Quan, D. L. Sedlak, T. D. Waite, P. Westerhoff, and J.-H. Kim, The technology horizon for photocatalytic water treatment: Sunrise or sunset?, Environ. Sci. Technol., 53, 2937-2947 (2019). https://doi.org/10.1021/acs.est.8b05041
  2. M. N. Chon, B. Jin, C. W. K. Chow, and C. Saint, Recent developments in photocatalytic water treatment technology: A review, Water Res., 44, 2997-3027 (2010). https://doi.org/10.1016/j.watres.2010.02.039
  3. M. R. Hoffmann, S. T. Martin, W. Choi, and D. W. Bahnemann, Environmental applications of semiconductor photocatalysis, Chem. Rev., 95, 69-96 (1995). https://doi.org/10.1021/cr00033a004
  4. A. Fujishima, X. Zhang, and D. A. Tryk, TiO2 photocatalysis and related surface phenomena, Surf. Sci. Rep., 63, 515-582 (2008). https://doi.org/10.1016/j.surfrep.2008.10.001
  5. D. L. Liao and B. Q. Liao, Shape, size and photocatalytic activity control of TiO2 nanoparticles with surfactants, J. Photochem. Photobiol. A, 187, 363-369 (2007). https://doi.org/10.1016/j.jphotochem.2006.11.003
  6. M. H. Priya and G. Madras, Photocatalytic degradation of nitrobenzenes with combustion synthesized nano-TiO2, J. Photochem. Photobiol. A, 178, 1-7 (2006). https://doi.org/10.1016/j.jphotochem.2005.06.012
  7. G. Sivalingam, K. Nagaveni, M. S. Hegde, and G. Madras, Photocatalytic degradation of various dyes by combustion synthesized nano anatase TiO2, Appl. Catal. B, 45, 23-38 (2003). https://doi.org/10.1016/S0926-3373(03)00124-3
  8. W. Choi, A. Termin, and M. R. Hoffman, The role of metal ion dopants in quantum-sized TiO2: Correlation between photoreactivity and charge carrier recombination dynamics, J. Phys. Chem., 98, 13669-13679 (1994). https://doi.org/10.1021/j100102a038
  9. Y. Gao, M. Hu, and B. Mi, Membrane surface modification with TiO2-graphene oxide for enhanced photocatalytic performance, J. Membr. Sci., 455, 349-356 (2014). https://doi.org/10.1016/j.memsci.2014.01.011
  10. G. R. Meseck, R. Kontic, G. R. Patzke, and S. Seeger, Photocatalytic composites of silicone nanofilaments and TiO2 nanoparticles, Adv. Funct. Mater., 22, 4433-4438 (2012). https://doi.org/10.1002/adfm.201200816
  11. D. N. Priya, J. M. Modak, and A. M. Raichur, LbL fabricated poly(styrene sulfonate)/TiO2 multilayer thin films for environmental applications, ACS Appl. Mater. Interfaces, 1, 2684-2693 (2009). https://doi.org/10.1021/am900566n
  12. E. Bet-moushoul, Y. Mansourpanah, Kh. Farhadi, and M. Tabatabaei, TiO2 nanocomposite based polymeric membranes: a review on performance improvement for various applications in chemical engineering processes, Chem. Eng. J., 283, 29-46 (2016). https://doi.org/10.1016/j.cej.2015.06.124
  13. P. Kaner, D. J. Johnson, E. Seker, N. Hilal, and S. A. Altinkaya, Layer-by-layer surface modification of polyethersulfone membranes using polyelectrolytes and AgCl/TiO2 xerogels, J. Membr. Sci., 493, 807-819 (2015). https://doi.org/10.1016/j.memsci.2015.05.048
  14. S. Mozia, D. Darowna, A. Orecki, R. Wrobel, K. Wilpiszewska, and A. W. Morawski, Microscopic studies on TiO2 fouling of MF/UF polyethersulfone membranes in a photocatalytic membrane reactor, J. Membr. Sci., 470, 356-368 (2014). https://doi.org/10.1016/j.memsci.2014.07.049
  15. R. A. Damodar, S.-J. You, and H.-H. Chou, Study the self cleaning, antibacterial and photocatalytic properties of TiO2 entrapped PVDF membranes, J. Hazard. Mater., 172, 1321-1328 (2009). https://doi.org/10.1016/j.jhazmat.2009.07.139
  16. A. Rahimpour, S. S. Madaeni, A. H. Taheri, and Y. Mansourpanah, Coupling TiO2 nanoparticles with UV irradiation for modification of polyethersulfone ultrafiltration membranes, J. Membr. Sci., 313, 158-169 (2008). https://doi.org/10.1016/j.memsci.2007.12.075
  17. S. H. Kim, S.-Y. Kwak, B.-H. Sohn, and T. H. Park, Design of TiO2 nanoparticle self-assembled aromatic polyamide thin-filmcomposite (TFC) membrane as an approach to solve biofouling problem, J. Membr. Sci., 211, 157-165 (2003). https://doi.org/10.1016/S0376-7388(02)00418-0
  18. G. Kang and Y. Cao, Development of antifouling reverse osmosis membranes for water treatment: A review, Water Res., 46, 584-600 (2012). https://doi.org/10.1016/j.watres.2011.11.041
  19. M. M. Pendergast and E. M. V. Hoek, A review of water treatment membrane nanotechnologies, Energy Environ. Sci., 4, 1946-1971 (2011). https://doi.org/10.1039/c0ee00541j
  20. L. Yang, Q. Zhai, G. Li, H. Jiang, L. Han, J. Wang, and E. Wang, A light transmission technique for pore size measurement in track-etched membranes, Chem. Commun., 49, 11415-11417 (2013). https://doi.org/10.1039/c3cc45841e
  21. L. Ricq, A. Pierre, S. Bayle, and J.-C. Reggiani, Electrokinetic characterization of polyethersulfone UF membranes, Desalination, 109, 253-261 (1997). https://doi.org/10.1016/S0011-9164(97)00071-4
  22. G. Wypych, Handbook of Polymers, 2d ed., ChemTec Publishing, Toronto, Chanada (2016).
  23. D. Heger, J. Jirkovsky, and P. Klan, Aggregation of methylene blue in frozen aqueous solutions studied by absorption spectroscopy, J. Phys. Chem. A, 109, 6702-6709 (2005). https://doi.org/10.1021/jp050439j