DOI QR코드

DOI QR Code

Experimental Studies on Limiting Concentration of High Saline Feed Solution in Electrodialysis

전기투석 시스템에서 고농도 수용액의 한계 농축에 대한 연구

  • Junsu, Jang (Department of Future Convergence Engineering, Kongju National University) ;
  • Bumjoo, Kim (Department of Future Convergence Engineering, Kongju National University)
  • 장준수 (공주대학교 미래융합공학과) ;
  • 김범주 (공주대학교 미래융합공학과)
  • Received : 2022.12.28
  • Accepted : 2023.01.25
  • Published : 2023.02.10

Abstract

The salt concentration process in electrodialysis, which uses electrical energy to enhance ion concentrations in an aqueous electrolyte solution, has been studied on the transfer phenomenon of ions and water molecules over the ion exchange membrane. In this paper, we investigated various parameters for limiting concentration of electrolyte solution and the electroosmosis phenomenon in an electrodialysis system by varying salt concentration of electrolyte solution. The electroosmotic water transport was analyzed by measuring the ions and water fluxes in electrolyte solutions having two different NaCl concentrations (NaCl 2M/4M), and concentration change was observed for various volume ratios of the diluted reservoir to the concentration one As a result, it was found that the higher concentration of the aqueous electrolyte solution, the lower electroosmosis, and the higher volume ratio led to a higher concentration in the dilute reservoir, so the limiting concentration was enhanced and the specific energy consumption decreased.

전기투석에서 농축 공정은 전기 에너지를 이용하여 전해질 수용액 상의 이온의 농도를 증가시키는 기술로, 이온교환막에서 일어나는 이온과 물 분자의 전달 현상에 대해 많은 연구들이 진행되고 있다. 본 연구에서는 전기투석 시스템에서 고농도 전해질 수용액의 전기 삼투에 의한 농축 현상에 대한 실험을 통해 한계 농축 현상에 대한 변수를 분석한다. 두 가지 전해질 수용액(NaCl 2M / 4M)에 대해 이온과 물 분자의 투과량을 측정해 전기 삼투 현상을 분석하였고, 농축조 대비 탈염조의 부피 비에 따른 한계 농축 현상을 관찰하였다. 실험 결과, 전해질 수용액의 농도가 높을수록 전기 삼투가 감소하였고, 부피 비가 클수록 탈염수의 농도가 높게 유지되기 때문에 한계 농축 농도가 증가하고 비에너지 소모가 감소됨을 확인하였다.

Keywords

Acknowledgement

본 논문은 2022년도 정부(과학기술정보통신부, 교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 개인기초연구(No.2022R1F1A1064531)와 지자체-대학협력기반 지역혁신 사업(2021RIS-004)의 결과임.

References

  1. M. N. Soliman, F. Z. Guen, S. A. Ahmed, H. Saleem, M. J. Khalil, and S. J. Zaidi, Energy consumption and environmental impact assessment of desalination plants and brine disposal strategies, Process Saf. Environ. Prot., 147, 589-608 (2021). https://doi.org/10.1016/j.psep.2020.12.038
  2. A. W. Mohammad, Y. H. Teow, W. L. Ang, Y. T. Chung, D. L. Oatley-Radcliffe, and N. Hilal, Nanofiltration membranes review: Recent advances and future prospects, Desalination, 356, 226-254 (2015). https://doi.org/10.1016/j.desal.2014.10.043
  3. H. Strathmann, Ion.-Exchange Membrane Separation Processes, 1st ed., 12-15, Elsevier, Amsterdam, Netherlands (2004).
  4. H. Strathmann, Electrodialysis, a mature technology with a multitude of new applications, Desalination, 264, 268-288 (2010). https://doi.org/10.1016/j.desal.2010.04.069
  5. L. Giorno, E. Drioli, and H. Strathmann, Water Transport in Ion-Exchange Membranes In E. Drioli, L. Giorno (eds.), Encyclopedia of Membranes, 2011-2015, Springer Berlin Heidelberg, Berlin, Heidelberg (2016).
  6. V. K. Indusekhar and N. Krishnaswamy, Water transport studies on interpolymer ion-exchange membranes, Desalination, 52, 309-316 (1985). https://doi.org/10.1016/0011-9164(85)80040-0
  7. T. Rottiers, K. Ghyselbrecht, B. Meesschaert, B. Van der Bruggen, and L. Pinoy, Influence of the type of anion membrane on solvent flux and back diffusion in electrodialysis of concentrated NaCl solutions, Chem. Eng. Sci., 113, 95-100 (2014). https://doi.org/10.1016/j.ces.2014.04.008
  8. T. G. Brydges and J. W. Lorimer, The dependence of electro- osmotic flow on current density and time, J. Membr. Sci., 13, 291-305 (1983). https://doi.org/10.1016/S0376-7388(00)81562-8
  9. C. Larchet, B. Auclair, and V. Nikonenko, Approximate evaluation of water transport number in ion-exchange membranes, Electrochim. Acta., 49, 1711-1717 (2004). https://doi.org/10.1016/j.electacta.2003.11.030
  10. C. E. Evans, R. D. Noble, S. Nazeri-Thompson, B. Nazeri, and C. A. Koval, Role of conditioning on water uptake and hydraulic permeability of Nafion® membranes., J. Membr. Sci., 279, 521-528 (2006). https://doi.org/10.1016/j.memsci.2005.12.046
  11. A. H. Galama, M. Saakes, H. Bruning, H. H. M. Rijnaarts, and J. W. Post, Seawater predesalination with electrodialysis, Desalination, 342, 61-69 (2014). https://doi.org/10.1016/j.desal.2013.07.012
  12. M. Tedesco, H. V. M. Hamelers, and P. M. Biesheuvel, Nernst-Planck transport theory for (reverse) electrodialysis: I. Effect of co-ion transport through the membranes, J. Membr. Sci., 510, 370-381 (2016). https://doi.org/10.1016/j.memsci.2016.03.012
  13. M. Tedesco, H. V. M. Hamelers, and P. M. Biesheuvel, Nernst-Planck transport theory for (reverse) electrodialysis: II. Effect of water transport through ion-exchange membranes, J. Membr. Sci., 531, 172-182 (2017). https://doi.org/10.1016/j.memsci.2017.02.031
  14. S. Porada, W. J. van Egmond, J. W. Post, M. Saakes, and H. V. M. Hamelers, Tailoring ion exchange membranes to enable low osmotic water transport and energy efficient electrodialysis, J. Membr. Sci., 552, 22-30 (2018). https://doi.org/10.1016/j.memsci.2018.01.050
  15. N. Kim, S. Jeong, W. Go, and Y. Kim, A Na+ ion-selective desalination system utilizing a NASICON ceramic membrane, Water Res., 215, 118250 (2022).
  16. H. Yan, Y. Wang, L. Wu, M. A. Shehzad, C. Jiang, R. Fu, Z. Liu, and T. Xu, Multistage-batch electrodialysis to concentrate high-salinity solutions: Process optimisation, water transport, and energy consumption, J. Membr. Sci., 570-571, 245-257 (2019). https://doi.org/10.1016/j.memsci.2018.10.008
  17. B. Sun, M. Zhang, S. Huang, W. Su, J. Zhou, and X. Zhang, Performance evaluation on regeneration of high-salt solutions used in air conditioning systems by electrodialysis, J. Membr. Sci., 582, 224-235 (2019). https://doi.org/10.1016/j.memsci.2019.04.004
  18. B. Sun, M. Zhang, S. Huang, J. Wang, and X. Zhang, Limiting concentration during batch electrodialysis process for concentrating high salinity solutions: A theoretical and experimental study, Desalination, 498, 114793 (2021).
  19. B. Sun, M. Zhang, S. Huang, Z. Cao, L. Lu, and X. Zhang, Study on mass transfer performance and membrane resistance in concentration of high salinity solutions by electrodialysis, Sep. Purif. Technol., 281, 119907 (2022).
  20. Ponomarev and Lokota-Fabulyak, Concentration des electrolytes par electrodialyse, Zhurnal Prikl. Him., 56, 2601-2603 (1983).
  21. M. Bailly, H. Roux-de Balmann, P. Aimar, F. Lutin, and M. Cheryan, Production processes of fermented organic acids targeted around membrane operations: design of the concentration step by conventional electrodialysis, J. Membr. Sci., 191, 129-142 (2001). https://doi.org/10.1016/S0376-7388(01)00459-8
  22. F. J. Borges, H. Roux-de Balmann, and R. Guardani, Investigation of the mass transfer processes during the desalination of water containing phenol and sodium chloride by electrodialysis, J. Membr. Sci., 325, 130-138 (2008). https://doi.org/10.1016/j.memsci.2008.07.017
  23. S. P. Pinho and E. A. Macedo, Solubility of NaCl, NaBr, and KCl in water, methanol, ethanol, and their mixed solvents., J. Chem. Eng. Data., 50, 29-32 (2005). https://doi.org/10.1021/je049922y
  24. W. S. Walker, Y. Kim, and D. F. Lawler, Treatment of model inland brackish groundwater reverse osmosis concentrate with electrodialysis-Part I: sensitivity to superficial velocity, Desalination., 344, 152-162 (2014). https://doi.org/10.1016/j.desal.2014.03.035