
Plant Pathol. J. 39(1) : 21-27 (2023)
https://doi.org/10.5423/PPJ.RW.10.2022.0145
eISSN 2093-9280 ©The Korean Society of Plant Pathology

The Plant Pathology Journal

Review Open Access

Regulation of Salicylic Acid and N-Hydroxy-Pipecolic Acid in Systemic  
Acquired Resistance 

Gah-Hyun Lim  1,2*
1Department of Biological Sciences, Pusan National University, Busan 46241, Korea
2Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea

(Received on October 27, 2022; Revised on December 22, 2022; Accepted on December 22, 2022)

In plants, salicylic acid (SA) is a central immune signal 
that is involved in both local and systemic acquired re-
sistance (SAR). In addition to SA, several other chemi-
cal signals are also involved in SAR and these include 
N-hydroxy-pipecolic acid (NHP), a newly discovered 
plant metabolite that plays a crucial role in SAR. Re-
cent discoveries have led to a better understanding of 
the biosynthesis of SA and NHP and their signaling 
during plant defense responses. Here, I review the 
recent progress in role of SA and NHP in SAR. In ad-
dition, I discuss how these signals cooperate with other 
SAR-inducing chemicals to regulate SAR.

Keywords : N-hydroxy-pipecolic acid, pipecolic acid, sali-
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The innate immune system of plants detects and responds 
to pathogens in their environment (Chassot et al., 2008; 
Osbourn, 1996; Underwood, 2012). Owing to the evolu-
tionary arms race between pathogens and plants, plants 
have developed layers of immune defense. The immune 
response typically begins with membrane-localized pat-

tern recognition receptors that detect molecular patterns 
associated with microbes. This triggers pattern-triggered 
immunity (PTI). Parallelly, R proteins, mainly nucleotide-
binding leucine-rich repeat receptors, perceive effectors 
secreted by pathogens to suppress plant defenses. Direct 
and idirect recognition of effector proteins by R proteins 
activate effector-triggered immunity (ETI) (Jones and 
Dangl, 2006). PTI and ETI not only induce local defenses 
but can also induce resistance in the plant’s distal parts by 
delivering signals, thereby establishing long-lasting and 
broad-spectrum resistance. This phenomenon is called sys-
temic acquired resistance (SAR). The SAR-induced plants 
are primed for induction of defense genes thereby enabling 
plants to defend themselves more efficiently against sub-
sequent pathogen infection (Fu and Dong, 2013; Klessig et 
al., 2018). Therefore, understanding the regulatory mecha-
nisms of SAR is crucial for enhancing plant disease resis-
tance and reducing yield losses. In recent years, researchers 
have begun dissecting the key components that regulate 
the SAR pathway to gain a better understanding of its 
regulation. SAR mediated long-distance signaling involves 
several SAR-inducing chemicals, including salicylic acid 
(SA) (Shah et al., 2014), methyl salicylic acid (MeSA) (Park 
et al., 2007, 2009), azelaic acid (AzA) (Jung et al., 2009), 
glycerol-3-phosphate (G3P) (Chanda et al., 2011), dehy-
droabietinal (Chaturvedi et al., 2012), pipecolic acid (Pip) 
(Návarová et al., 2012; Zeier, 2013), N-hydroxy-pipecolic 
acid (NHP) (Hartmann et al., 2018; Návarová et al., 2012), 
the free radicals nitric oxide (NO) and reactive oxygen spe-
cies (El-Shetehy et al., 2015; Wang et al., 2014), and galac-
tolipids (Gao et al., 2015). SAR is also associated with fac-
tors contributing to cuticle formation (Lim et al., 2020; Xia 
et al., 2009, 2010), and the lipid transfer proteins defective 
in induced resistance 1 (DIR1) (Maldonado et al., 2002; Yu 
et al., 2013), AzA insensitive 1 (AZI1) (Jung et al., 2009), 
and trans-acting small interfering RNA3a RNAs (TAS3a) 
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(Shine et al., 2022).
Mutants with impaired SA biosynthesis, perception, 

or signal transduction have weakened disease resistance, 
whereas those with high SA levels have improved disease 
resistance (Fu and Dong, 2013; Nawrath and Métraux, 
1999; Torrens-Spence et al., 2019; Wu et al., 2012). Addi-
tionally, SA and its analogs can enhance disease resistance 
both locally and systemically (Gao et al., 2014; Vlot et al., 
2009). In contrast to the extensive research conducted on 
the mechanism and regulatory network of SA in SAR, little 
is known about the actions of many mobile signals. In a 
recent study, NHP was identified as a crucial molecule in 
Arabidopsis, which accumulated within 24 h after local 
infection and triggered SAR. Here, I review the role of SA 
and NHP in SAR, with an aim to provide an overview of 
the current advancements and future perspectives in SA 
and NHP biology.

Regulation of SA Biosynthesis

In higher plants, the biosynthesis of SA occurs via the 
isochorismate synthase (ICS)- and/or phenylalanine 
ammonia-lyase (PAL)-dependent pathways (Huang et al., 
2010; Rekhter et al., 2019; Wildermuth et al., 2001). While 
contribution of these two branches differs among plants, 
in Arabidopsis a majority (~90%) of pathogen-induced 
SA is derived from the ICS-catalyzed branch. The Arabi-
dopsis plants express two ICS genes and off these ICS1 
contributes to a majority of pathogen-induced SA (Garcion 
et al., 2008; Nawrath and Métraux, 1999). Interestingly, 
a mutation in either PAL isoforms or ICS1 impairs SAR, 
indicating that both SA biosynthesis via both ICS and 
PAL branches is important for SAR (Huang et al., 2010). 
The pathogen induced expression of ICS1 is dependent 
on calmodulin binding protein 60g (CBP60g) and SAR-
deficient 1 (SARD1) transcription factors (Truman and 
Glazebrook, 2012). The cbp60g sard1 double mutant 
shows impaired ICS1 induction and SA biosynthesis, re-
sulting in a compromised SAR (Zhang and Zhou, 2010). 
Biosynthesis and transport of SA precursor isochorimate 
from chloroplast to cytosol is dependent on cytosolic ami-
dotransferase avrPphB susceptible 3 (PBS3) and chloro-
plastic enhanced disease susceptibility 5 protein (EDS5), 
respectively (Rekhter et al., 2019). The mutant defective 
in either PBS3 or EDS5 shows impaired SA accumulation 
and compromised SAR (Nawrath and Métraux, 1999). 

Upon biosynthesis, SA is can be converted to SA 2-O-β-
D-glucoside (SAG) and MeSA through glycosylation or 
methylation, respectively. At least three Arabidopsis UDP-
glucosyltransferases are involved in the conversion of SA 

to SAG (Dean and Delaney, 2008; Song, 2006). In Arabi-
dopsis, mutants of UGT74F1, UGT74F2, and UGT76B1 
exhibit reduced SAG levels, increased SA accumulation, 
and enhanced disease resistance (Noutoshi et al., 2012; von 
Saint Paul et al., 2011) (Fig. 1).

Role of SA in Local and Systemic Defenses

During SAR, SA accumulates both locally and systemical-
ly, and early experiments have shown that the degradation 
of SA by the SA hydroxylase (NahG) compromises both 
local resistance and SAR (Vernooij et al., 1994). Interest-
ingly, plants lacking the R protein RPS2 accumulate nor-
mal levels of SA in their distal tissues after infection with 
P. syringae pv. tomato (Pst) DC3000 carrying avrRpt2, 
but still remain compromised in SAR (Cameron et al., 
1999). This suggests factors other than SA may contribute 
to SAR in rps2 plants. G3P or AzA, which induce SAR in 
wild-type plants, do not induce SA accumulation in plants. 
However, G3P or AzA are unable to confer SAR in ics1/
sid2 plants, which accumulate significantly reduced basal 
and pathogen-induced SA levels (Chanda et al., 2011). 
Together, these results suggest that, while SA is clearly im-
portant for SAR, this alone is insufficient. Recent work has 
shown that distal transport of SA is crucial for SAR and is 
regulated by water potential (Lim et al., 2020).

Regulation of NHP Biosynthesis

NHP, another recently discovered plant metabolite, is also 
essential for SAR (Chen et al., 2018; Hartmann and Zeier, 
2018). In Arabidopsis, NHP is synthesized from Pip (Fig. 
1). Three distinct enzymes are required for biosynthesis 
of NHP and are encoded by genes that are highly respon-
sive to biotic stress (Zeier, 2021). Among them, AGD2-
like defense response protein 1 (ALD1) encodes a Lys 
aminotransferase that generates 2,3-dehydro-pipecolic 
acid (dehydro-Pip; 2,3-DP) from lysine. SAR-deficient 
4 (SARD4), which encodes bacterial ornithine cyclode-
aminase, converts 2,3-DP to Pip. Lastly, flavin-dependent 
monooxygenase 1 (FMO1) generates NHP by adding hy-
droxyl amine to Pip. The ald1 and fmo1 mutants prevent 
the accumulation of NHP, resulting in reduced pathogen 
resistance and compromised SAR (Mishina and Zeier, 
2006; Song et al., 2004). Additionally, pathogen inoculated 
fmo1 plants accumulate Pip to higher than wild-type levels. 
NHP exists in both the free and glycosylated forms. Plants 
infected with pathogens accumulate NHP and NHP-N-
O-glucoside (NHPG) (Chen et al., 2018; Hartmann et al., 
2018). UDP-glycosyltransferases (UGTs) play a crucial 
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role in the regulation of signaling molecules via glycosyl-
ation (Chen et al., 2020; Dean and Delaney, 2008; Hou et 
al., 2004; Jin et al., 2013; Song, 2005). A number of UGTs 
are closely associated with plant disease resistance. For 
example, UGT73B3 and UGT73B5 are required for resis-
tance to Pst DC3000 in Arabidopsis (Langlois-Meurinne 
et al., 2005). In addition, UGTs can recognize certain 
defense-related metabolites as substrates and alter them to 
an inactive form. NHP are glycosylated by UGT76B1 to 
produce NHPG, which is inactive (Bauer et al., 2021; Cai 
et al., 2021; Holmes et al., 2021; Mohnike et al., 2021) 
(Fig. 1).

Role of Pip and NHP in Local and Systemic De-
fenses

Plants locally treated with Pip induce SAR (Li et al., 2020; 
Wang et al., 2018). Exogenous Pip application also en-

hances local resistance to P. syringae, inducing defense 
priming and the expression of genes associated with plant 
defense (Bernsdorff et al., 2016; Hartmann et al., 2018; 
Návarová et al., 2012). Pip can be detected in vascular exu-
dates after local infection (Návarová et al., 2012; Wang et 
al., 2018) and localized application of 14C- Pip is detected 
in distal leaves (Wang et al., 2018). However, petiole 
exudate from Pip deficient ald1 plants can induce SAR, 
suggesting that transport of Pip or NHP is not required for 
SAR (Shine et al., 2022; Wang et al., 2018). Exogenous 
application of NHP restores SAR in ald1 and fmo1 mutant, 
suggesting that NHP functions downstream of Pip (Chen 
et al., 2018; Hartmann et al., 2018; Zeier, 2021). However, 
no endogenous free NHP was detected at infection sites 
on wild-type seedlings or adult plants (Chen et al., 2018). 
Jiang et al. (2021) were also unable to detect NHP in 
local exudate and distal leaves in ald1 mutants and DEX-
induced transgenic ALD1. It remains unclear whether NHP 

Fig. 1. Salicylic acid and N-hydroxypipecolic acid are required for systemic acquired resistance. Abbreviations used are isochosrismate 
synthase (ICS), avrPphB susceptible 3 (PBS3), EPS1 chorismate mutase (CM), phenylalanine ammonia lyase (PAL), abnormal inflo-
rescence meristem1 (AIM1) benzoic acid 2-hydroxylase (BA2H), AGD2-like defense response protein 1 (ALD1), SAR-deficient 4 
(SARD4), flavin-dependent monooxygenase 1 (FMO1), and UDP-glycosyltransferase 76B1 (UGT76B1). 
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is converted to additional SAR signaling molecules (Shan 
and He, 2018; Yildiz et al., 2021).

Transport of SA and NHP in SAR

During SAR, SA preferentially transports via the apoplast, 
while AzA and G3P load via the symplast (Lim et al., 
2016). AzA and G3P are transported by symplastic trans-
port through the plasmodesmata (PD). PDLP1 and PDLP5 
(plasma localizing protein 1 and 5), two PD localizing 
proteins, regulate SAR by controlling PD gating and sub-
cellular partitioning (Lim et al., 2016). Recent research fur-
ther suggests that a portion of the total SA is incorporated 
into cuticle wax during systemic SA transport (Lim et al., 
2020). As a result, mutants with defects in the cuticle show 
reduced SA transport to distal tissues and compromised 
SAR (Lim et al., 2020). Cuticle defects prevent SA from 
moving through the apoplast since increased transpiration 
in these mutants leads to a reduction in apoplastic hydro-
static pressure (Kachroo et al., 2022; Lim et al., 2020). 

During pathogen infection, SA is synthesized in the cy-
toplast (Rekhter et al., 2019). In contrast, Pip appears to be 
synthesized in plastids based on the localization of ALD1 
and SARD4 (Cecchini et al., 2015; Sharma et al., 2013; 
Wang et al., 2018). Pip is likely transported to cytosol 
where it is converted to NHP via cytosol localized FMO1 
(Hartmann et al., 2018; Kachroo et al., 2021). Interestingly, 
it was recently found that UV-induced NHP accumulation 
is markedly reduced in eds5 mutant plants (Rekhter et al., 
2019). Exogenous application of SA could not recover 
NHP accumulation in eds5 mutant plants, indicating that 
EDS5 is required for NHP biosynthesis (Rekhter et al., 
2019). It is probable that besides SA precursor, EDS5 
may also facilitates the transport of Pip from the plastid to 
the cytosol, where Pip is converted into NHP by FMO1 
(Rekhter et al., 2019). It remains unclear whether Pip pro-
motes plant immunity by exerting its function in plastids or 
through translocation.

SA-NHP Interaction during Plant Immunity

In view of the common overlap between the SA and NHP 
regulators, it is not surprising that SA and NHP could co-
operatively influence each other to induce SAR (Shields et 
al., 2022). SAR and/or the priming of associated defenses 
may also involve interaction between various SAR as-
sociated chemicals (Bernsdorff et al., 2016; Hartmann et 
al., 2018; Kachroo et al., 2022; Koo et al., 2020). A recent 
ChIP analysis revealed that SARD1 and CBP60g target 

not only genes involved in the biosynthesis of SA but also 
genes involved in the synthesis of NHPs, such as ALD1, 
SARD4, and FMO1 (Sun et al., 2015). The expression lev-
els of ALD1, SARD4, and FMO1 are significantly reduced 
in sard1 cbp60g double mutant inoculated with Pseudo-
monas syiringae pv. maculicola (Psm) ES4326 (Huang et 
al., 2020). In contrast, overexpression of SARD1 increases 
the expression of ALD1 and SARD4 as well as the level of 
Pip (Sun et al., 2018). The sard1 cbp60g double mutant 
shows significantly lower Pip and NHP levels after infec-
tion with Psm ES4326 than the wild-type plants, suggesting 
that SARD1 and CBP60g activate Pip and NHP biosyn-
thesis by inducing their biosynthesis genes. Additionally, 
UGT76B1 accepts both NHP and SA as substrates (Bauer et 
al., 2021; Cai et al., 2021). These results suggest interac-
tion between SA- and NHP-regulated processes leading to 
SAR. Notably, D9-NHP of leaf- to leaf movement was also 
observed in the ics1 mutant, suggesting that SA signaling is 
not required for transport of NHP (Yildiz et al., 2021). Al-
though, numerous transcription factors regulating SA and 
NHP biosynthesis have been identified, their connection to 
upstream defense signaling components remains unclear.

Concluding Remarks and Perspectives

The SAR pathway are conserved between diverse plants 
including Arabidopsis, soybean, tobacco, cucumber, toma-
to, and the monocot Brachypodium dystachyon (Holmes et 
al., 2019; Schnake et al., 2020; Shine et al., 2019). Higher 
levels of SA and NHP result in dwarfed plants (Cai et al., 
2021; Rivas-San Vicente and Plasencia, 2011), suggesting 
that optimal levels of these chemical govern normal devel-
opment and defense. The transient expression of Arabidopsis 
ALD1 and FMO1 in N. benthamiana can increase NHP 
production 100-1,000 times more than the native plants 
(Holmes et al., 2019). The transient overexpression of 
ALD1, SARD4, and FMO1 in tomato plants can also induce 
disease resistance and activate the SAR pathway (Holmes 
et al., 2019). Similarly, transient expression of UGT76B1 
glycosylates NHP and suppresses defense signals in tomato 
(Holmes et al., 2021). This suggests that while engineering 
plants to produce more NHP may confer disease resistance 
it can also affect their normal growth and development. 
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