DOI QR코드

DOI QR Code

JWL 상태방정식을 활용한 실린더 팽창 실험 모델링

Modeling of Cylinder Expansion Test Using JWL Equation of State

  • 김민주 (인하대학교 에너지자원공학과) ;
  • 권상기 (인하대학교 에너지자원공학과)
  • 투고 : 2023.03.03
  • 심사 : 2023.03.17
  • 발행 : 2023.03.31

초록

폭약은 다양한 종류가 존재하며, 각 폭약마다 내수성, 폭굉에 필요한 에너지, 파쇄력 등의 특성이 상이하기 때문에 폭약의 특성에 대한 이해는 폭약의 안전한 사용 및 성능 향상에 중요하다. 폭약의 특성의 이해를 위해 다양한 실험들과 더불어 간접적인 방법으로 컴퓨터 시뮬레이션이 활용되고 있으며, 컴퓨터 시뮬레이션으로 폭약의 폭굉 과정을 표현하기 위해서 상태방정식을 활용하고 있다. 본 연구에서는 폭약의 상태방정식 중 주로 사용하는 JWL EOS의 대한 설명과 JWL EOS의 계수를 산정하기 위한 실린더 팽창 실험을 ANSYS AUTODYN으로 구현하여 실제 실험 결과와 비교, 분석하였다. 그 결과, 20% 내외의 오차율이 발생하였으며, 압력과 에너지의 전체적인 변화 양상이 기 발표된 실험 결과와 일치함을 볼 수 있었다.

There are various types of explosives, and each explosive has different characteristics such as water resistance, energy required for detonation, and crushing power, so understanding the characteristics of explosives is important for safe use and performance improvement. Computer simulation is used indirectly along with various experiments to understand the characteristics of explosives, and a state equation is used to express the explosive detonation process through computer simulation. In this study, the explanation of JWL EOS, which is mainly used among the state equations of explosives, and the cylinder expansion experiment to calculate the coefficient of JWL EOS were implemented as ANSYS AUTODYN and compared and analyzed with the actual experimental results. As a result, an error rate of around 20% occurred, and it was found that the overall change pattern of pressure and energy was consistent with the previously published experimental results.

키워드

과제정보

이 논문은 한국연구재단의 이공분야기초연구사업(NRF-2022R1F1A1064304)의 지원으로 수행되었습니다.

참고문헌

  1. Amar, S., Kochavi, E., Lefler, Y., Vaintraub, S., and Sidilkover, D., 2017, Comparison of BKW and JWL equations of state for explosion simulations, In 30th International Symposium on Shock Waves 2, Springer International Publishing, Vol. 2, pp. 1003-1008. 
  2. Autodyn, N. N., 2003, Theory manual, Horsham, UK, Century Dynamics Ltd. 
  3. Castedo, R., Natale, M., Lopez, L. M., Sanchidrian, J. A., Santos, A. P., Navarro, J., and Segarra, P., 2018, Estimation of Jones-Wilkins-Lee parameters of emulsion explosives using cylinder tests and their numerical validation, International Journal of Rock Mechanics and Mining Sciences, Vol. 112, pp. 290-301.  https://doi.org/10.1016/j.ijrmms.2018.10.027
  4. Catanach, R., Hill, L., Harry, H., Aragon, E., and Murk, D., 1999, Cylinder test specification (No. LA-13643-MS), Los Alamos National Lab.(LANL), Los Alamos, NM (United States). 
  5. Courant, R., and Friedrichs, K. O., 1948, Supersonic flow and shock waves, Interscience Pulishers, Inc., New York. 
  6. Cowan, R. D. and Fickett, W., 1956, Calculation of the detonation properties of solid explosives with the kistiakowsky-wilson equation of state, The Journal of Chemical Physics, Vol. 24 No. 5, pp. 932-939.  https://doi.org/10.1063/1.1742718
  7. Davis, L. L. and Hill, L. G., 2002, ANFO cylinder tests, In AIP conference proceedings, American Institute of Physics Vol. 620, No. 1, pp. 165-168. 
  8. Dobratz, B. M., 1981, LLNL explosives handbook: properties of chemical explosives and explosives and explosive simulants, Lawrence Livermore National Lab., CA (USA). 
  9. Dobratz, B. M. and Crawford, P. C., 1985, LLNL explosives handbook, UCRL-52997 Rev 2. 
  10. El-Sayegh, Z., 2014, An Improved Detonation Analogue to Reactive Euler Equations Using the Shallow Water Wave Model. 
  11. Elek, P., Dzingalasevic, V. V., Jaramaz, S., and Mickovic, D., 2015, Determination of detonation products equation of state from cylinder test, Analytical model and numerical analysis, Thermal science, Vol. 19 No. 1, pp. 35-48.  https://doi.org/10.2298/TSCI121029138E
  12. Esen, S., Nyberg, U., Arai, H., and Ouchterlony, F., 2005, Determination of the energetic characteristics of commercial explosives using the cylinder expansion test technique, Swedish Blasting Research Centre och Lulea tekniska universitet. 
  13. Hobbs, M. L., and Baer, M. R., 1993, Calibrating the BKW-EOS with a large product species data base and measured CJ properties, In Tenth Symposium (International) on Detonation, Boston, MA. 
  14. Jones, H. and Miller A. R., 1948, The detonation of solid explosives: the equilibrium conditions in the detonation wave-front and the adiabatic expansion of the products of detonation, Proceedings of the Royal Society of London, Series A, Mathematical and Physical Sciences, Vol. 194 No. 1039, pp. 480-507.  https://doi.org/10.1098/rspa.1948.0093
  15. Kury, J. W., Hornig, H. C., Lee, E. L., McDonnel, J. L., Ornellas, D. L., Finger, M., ... and Wilkins, M. L., 1965, Metal acceleration by chemical explosives, In fourth symposium (International) on Detonation, US Government Printing Office Washington, DC, pp. 3-13. 
  16. Kuznetsov, V., Determination of Gurney Quantities and JWL Equation of State Parameters from the Cylinder Expansion Test, Technical report, Weapons and Combat Systems Division Defence Science and Technology Group. 
  17. Lee, E. L., Hornig, H. C., and Kury, J. W., 1968, Adiabatic expansion of high explosive detonation products, No. UCRL-50422, Univ. of California Radiation Lab. at Livermore, Livermore, CA (United States). 
  18. Mao, X., Zheng, Y., Shen, F., Wang, Y., Wang, X., and Li, Y., 2022, A method for calculating the JWL equation of state parameters for the detonation products of CL-20-based aluminized explosives, Journal of Energetic Materials, Vol. 40, No. 2, pp. 182-205.  https://doi.org/10.1080/07370652.2020.1854370
  19. Minchinton, A., 2015, On the influence of fundamental detonics on blasting practice, In 11th international symposium on rock fragmentation by blasting, Sydney, pp. 41-53. 
  20. Mousavi, A. A., Burley, S. J., Al-Hassani, S. T. S., and Byers Brown, W., 2004, Simulation of explosive welding with ANFO mixtures, Propellants, Explosives, Pyrotechnics, An International Journal Dealing with Scientific and Technological Aspects of Energetic Materials, Vol. 29, No. 3, pp. 188-196.  https://doi.org/10.1002/prep.200400042
  21. Murnaghan, F. D., 1944, The compressibility of media under extreme pressures, Proceedings of the National Academy of Sciences, Vol. 30, No. 9, pp. 244-247.  https://doi.org/10.1073/pnas.30.9.244
  22. Reaugh, J. E. and Souers, P. C., 2004, A constant-density gurney approach to the cylinder test, Propellants, Explosives, Pyrotechnics: An International Journal Dealing with Scientific and Technological Aspects of Energetic Materials, Vol. 29, No. 2, pp. 124-128.  https://doi.org/10.1002/prep.200400031
  23. Sanchidrian, J. A., Castedo, R., Lopez, L. M., Segarra, P., and Santos, A. P., 2015, Determination of the JWL constants for ANFO and emulsion explosives from cylinder test data, Central European journal of energetic materials, Vol. 12, No. 2, pp. 177-194. 
  24. Souers, P. C. and Kury, J. W., 1993, Comparison of cylinder data and code calculations for homogeneous explosives, Propellants, Explosives, Pyrotechnics, Vol. 18, No. 4, pp. 175-183.  https://doi.org/10.1002/prep.199300002
  25. Urtiew, P. A. and Hayes, B., 1991, Parametric study of the dynamic JWL-EOS for detonation products, Combustion, Explosion and Shock Waves, Vol. 27, No. 4, pp. 505-514.  https://doi.org/10.1007/BF00789568
  26. Wilkins, M., Squier, B., and Halperin, B., 1964, The Equation of State of PBX 9404 and LX 04-01, Lawrence Radiation Laboratory, Livermore, Rept. UCRL-7797. 
  27. Zhang, X., Ding, Y., and Shi, Y., 2021, Numerical simulation of far-field blast loads arising from large TNT equivalent explosives, Journal of Loss Prevention in the Process Industries, Vol. 70, pp. 104432.