DOI QR코드

DOI QR Code

Comparative pluripotent characteristics of porcine induced pluripotent stem cells generated using different viral transduction systems

  • Sang-Ki Baek (Department of Animal Bioscience, College of Agriculture & Life Sciences, Gyeongsang National University) ;
  • In-Won Lee (Department of Animal Bioscience, College of Agriculture & Life Sciences, Gyeongsang National University) ;
  • Yeon-Ji Lee (Department of Animal Bioscience, College of Agriculture & Life Sciences, Gyeongsang National University) ;
  • Bo-Gyeong Seo (Division of Life Science, College of Natural Sciences, Gyeongsang National University) ;
  • Jung-Woo Choi (College of Animal Life Science, Kangwon National University) ;
  • Tae-Suk Kim (Department of Animal Bioscience, College of Agriculture & Life Sciences, Gyeongsang National University) ;
  • Cheol Hwangbo (Division of Applied Life Science, Gyeongsang National University) ;
  • Joon-Hee Lee (Department of Animal Bioscience, College of Agriculture & Life Sciences, Gyeongsang National University)
  • Received : 2023.12.12
  • Accepted : 2023.12.19
  • Published : 2023.12.31

Abstract

Background: Porcine pluripotent stem cells (pPSCs) would provide enormous potential for agriculture and biomedicine. However, authentic pPSCs have not established yet because standards for pPSCs-specific markers and culture conditions are not clear. Therefore, the present study reports comparative pluripotency characteristics in porcine induced pluripotent stem cells (piPSCs) derived from different viral transduction and reprogramming factors [Lenti-iPSCs (OSKM), Lenti-iPSCs (OSKMNL) and Sev-iPSCs (OSKM)]. Methods: Porcine fibroblasts were induced into Lenti-iPSCs (OSKM) and Lenti-iPSCs (OSKMNL) by using Lentiviral vector and Sev-iPSCs (OSKM) by using Sendaiviral vector. Expressions of endogenous or exogenous pluripotency-associated genes, surface marker and in vitro differentiation in between Lenti-piPSCs (OSKM), Lenti-iPSCs (OSKMNL) and Sev-piPSCs (OSKM) were compared. Results: Colonial morphology of Lenti-iPSCs (OSKMNL) closely resembles the naïve mouse embryonic stem cells colony for culture, whereas Sev-iPSCs (OSKM) colony is similar to the primed hESCs. Also, the activity of AP shows a distinct different in piPSCs (AP-positive (+) Lenti-iPSCs (OSKMNL) and Sev-iPSCs (OSKM), but AP-negative (-) Lenti-iPSCs (OSKM)). mRNAs expression of several marker genes (OCT-3/4, NANOG and SOX2) for pluripotency was increased in Lenti-iPSCs (OSKMNL) and Sev-iPSCs (OSKM), but Sev-iPSCs (OSKM). Interestingly, SSEA-1 of surface markers was expressed only in Sev-iPSCs (OSKM), whereas SSEA-4, Tra-1-60 and Tra-1-81 were positively expressed in Lenti-iPSCs (OSKMNL). Exogenous reprogramming factors continuously expressed in Lenti-iPSCs (OSKMNL) for passage 20, whereas Sev-iPSCs (OSKM) did not express any exogenous transcription factors. Finally, only Lenti-iPSCs (OSKMNL) express the three germ layers and primordial germ cells markers in aggregated EBs. Conclusions: These results indicate that the viral transduction system of reprograming factors into porcine differentiated cells display different pluripotency characteristics in piPSCs.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea funded by the Korean Government (2020R1l1A3072689) Republic of Korea. In-Won Lee, Yeon-Ji Lee and Bo-Gyeong Seo were supported by the scholarship from the BK21Plus Program, Ministry of Education, Republic of Korea.

References

  1. Alberio R, Croxall N, Allegrucci C. 2010. Pig epiblast stem cells depend on activin/nodal signaling for pluripotency and self-renewal. Stem Cells Dev. 19:1627-1636. https://doi.org/10.1089/scd.2010.0012
  2. Baek SK, Jeon SB, Seo BG, Hwangbo C, Shin KC, Choi JW, An CS, Jeong MA, Kim TS, Lee JH. 2021. The presence or absence of alkaline phosphatase activity to discriminate pluripotency characteristics in porcine epiblast stem cell-like cells. Cell. Reprogram. 23:221-238. https://doi.org/10.1089/cell.2021.0014
  3. Becker KA, Ghule PN, Therrien JA, Lian JB, Stein JL, van Wijnen AJ, Stein GS. 2006. Self-renewal of human embryonic stem cells is supported by a shortened G1 cell cycle phase. J. Cell. Physiol. 209:883-893. https://doi.org/10.1002/jcp.20776
  4. Becker KA, Stein JL, Lian JB, van Wijnen AJ, Stein GS. 2007. Establishment of histone gene regulation and cell cycle checkpoint control in human embryonic stem cells. J. Cell. Physiol. 210:517-526. https://doi.org/10.1002/jcp.20903
  5. Brevini TA, Tosetti V, Crestan M, Antonini S, Gandolfi F. 2007. Derivation and characterization of pluripotent cell lines from pig embryos of different origins. Theriogenology 67:54-63. https://doi.org/10.1016/j.theriogenology.2006.09.019
  6. Chambers I, Silva J, Colby D, Nichols J, Nijmeijer B, Robertson M, Vrana J, Jones K, Grotewold L, Smith A. 2007. Nanog safeguards pluripotency and mediates germline development. Nature 450:1230-1234. https://doi.org/10.1038/nature06403
  7. Choi KH, Park JK, Kim HS, Uh KJ, Son DC, Lee CK. 2013. Epigenetic changes of lentiviral transgenes in porcine stem cells derived from embryonic origin. PLoS One 8:e72184.
  8. Coronado D, Godet M, Bourillot PY, Tapponnier Y, Bernat A, Petit M, Afanassieff M, Markossian S, Malashicheva A, Iacone R, Anastassiadis K, Savatier P. 2013. A short G1 phase is an intrinsic determinant of naive embryonic stem cell pluripotency. Stem Cell Res. 10:118-131. https://doi.org/10.1016/j.scr.2012.10.004
  9. Daheron L, Opitz SL, Zaehres H, Lensch MW, Andrews PW, Itskovitz-Eldor J, Daley GQ. 2004. LIF/STAT3 signaling fails to maintain self-renewal of human embryonic stem cells. Stem Cells 22:770-778. https://doi.org/10.1634/stemcells.22-5-770
  10. Esteban MA, Xu J, Yang J, Peng M, Qin D, Li W, Jiang Z, Chen J, Deng K, Zhong M, Cai J, Lai L, Pei D. 2009. Generation of induced pluripotent stem cell lines from Tibetan miniature pig. J. Biol. Chem. 284:17634-17640. https://doi.org/10.1074/jbc.M109.008938
  11. Ezashi T, Telugu BP, Alexenko AP, Sachdev S, Sinha S, Roberts RM. 2009. Derivation of induced pluripotent stem cells from pig somatic cells. Proc. Natl. Acad. Sci. U. S. A. 106:10993-10998. https://doi.org/10.1073/pnas.0905284106
  12. Ezashi T, Telugu BP, Roberts RM. 2012. Induced pluripotent stem cells from pigs and other ungulate species: an alternative to embryonic stem cells? Reprod. Domest. Anim. 47 Suppl 4:92-97. https://doi.org/10.1111/j.1439-0531.2012.02061.x
  13. Gao Y, Hyttel P, Hall VJ. 2010. Regulation of H3K27me3 and H3K4me3 during early porcine embryonic development. Mol. Reprod. Dev. 77:540-549. https://doi.org/10.1002/mrd.21180
  14. Gao Y, Jammes H, Rasmussen MA, Oestrup O, Beaujean N, Hall V, Hyttel P. 2011. Epigenetic regulation of gene expression in porcine epiblast, hypoblast, trophectoderm and epiblast-derived neural progenitor cells. Epigenetics 6:1149-1161. https://doi.org/10.4161/epi.6.9.16954
  15. Ghule PN, Medina R, Lengner CJ, Mandeville M, Qiao M, Dominski Z, Lian JB, Stein JL, van Wijnen AJ, Stein GS. 2011. Reprogramming the pluripotent cell cycle: restoration of an abbreviated G1 phase in human induced pluripotent stem (iPS) cells. J. Cell. Physiol. 226:1149-1156. https://doi.org/10.1002/jcp.22440
  16. Henderson JK, Draper JS, Baillie HS, Fishel S, Thomson JA, Moore H, Andrews PW. 2002. Preimplantation human embryos and embryonic stem cells show comparable expression of stage-specific embryonic antigens. Stem Cells 20:329-337. https://doi.org/10.1634/stemcells.20-4-329
  17. Jaenisch R and Young R. 2008. Stem cells, the molecular circuitry of pluripotency and nuclear reprogramming. Cell 132:567-582. https://doi.org/10.1016/j.cell.2008.01.015
  18. Kim D, Kim CH, Moon JI, Chung YG, Chang MY, Han BS, Ko S, Yang E, Cha KY, Lanza R, Kim KS. 2009. Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell 4:472-476. https://doi.org/10.1016/j.stem.2009.05.005
  19. Lee IW, Lee HG, Moon DK, Lee YJ, Seo BG, Baek SK, Kim TS, Hwangbo C, Lee JH. 2023. Limited in vitro differentiation of porcine induced pluripotent stem cells into endothelial cells. J. Anim. Reprod. Biotechnol. 38:109-120. https://doi.org/10.12750/JARB.38.3.109
  20. Muller R and Lengerke C. 2009. Patient-specific pluripotent stem cells: promises and challenges. Nat. Rev. Endocrinol. 5:195-203. https://doi.org/10.1038/nrendo.2009.18
  21. Park IH, Lerou PH, Zhao R, Huo H, Daley GQ. 2008a. Generation of human-induced pluripotent stem cells. Nat. Protoc. 3:1180-1186. https://doi.org/10.1038/nprot.2008.92
  22. Park IH, Zhao R, West JA, Yabuuchi A, Huo H, Ince TA, Lerou PH, Lensch MW, Daley GQ. 2008b. Reprogramming of human somatic cells to pluripotency with defined factors. Nature 451:141-146. https://doi.org/10.1038/nature06534
  23. Park JK, Kim HS, Uh KJ, Choi KH, Kim HM, Lee T, Yang BC, Kim HJ, Ka HH, Kim H, Lee CK. 2013. Primed pluripotent cell lines derived from various embryonic origins and somatic cells in pig. PLoS One 8:e52481.
  24. Plath K, Fang J, Mlynarczyk-Evans SK, Cao R, Worringer KA, Wang H, de la Cruz CC, Otte AP, Panning B, Zhang Y. 2003. Role of histone H3 lysine 27 methylation in X inactivation. Science 300:131-135. https://doi.org/10.1126/science.1084274
  25. Romito A and Cobellis G. 2016. Pluripotent stem cells: current understanding and future directions. Stem Cells Int. 2016:9451492.
  26. Savatier P, Lapillonne H, van Grunsven LA, Rudkin BB, Samarut J. 1996. Withdrawal of differentiation inhibitory activity/leukemia inhibitory factor up-regulates D-type cyclins and cyclin-dependent kinase inhibitors in mouse embryonic stem cells. Oncogene 12:309-322.
  27. Smith AG, Heath JK, Donaldson DD, Wong GG, Moreau J, Stahl M, Rogers D. 1988. Inhibition of pluripotential embryonic stem cell differentiation by purified polypeptides. Nature 336:688-690. https://doi.org/10.1038/336688a0
  28. Takahashi K and Yamanaka S. 2006. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663-676. https://doi.org/10.1016/j.cell.2006.07.024
  29. Telugu BP, Ezashi T, Roberts RM. 2010. Porcine induced pluripotent stem cells analogous to naive and primed embryonic stem cells of the mouse. Int. J. Dev. Biol. 54:1703-1711. https://doi.org/10.1387/ijdb.103200bt
  30. Tomioka I, Maeda T, Shimada H, Kawai K, Okada Y, Igarashi H, Oiwa R, Iwasaki T, Aoki M, Kimura T, Shiozawa S, Shinohara H, Suemizu H, Sasaki E, Okano H. 2010. Generating induced pluripotent stem cells from common marmoset (Callithrix jacchus) fetal liver cells using defined factors, including Lin28. Genes Cells 15:959-969. https://doi.org/10.1111/j.1365-2443.2010.01437.x
  31. Vallier L, Touboul T, Brown S, Cho C, Bilican B, Alexander M, Cedervall J, Chandran S, Ahrlund-Richter L, Weber A, Pedersen RA. 2009. Signaling pathways controlling pluripotency and early cell fate decisions of human induced pluripotent stem cells. Stem Cells 27:2655-2666. https://doi.org/10.1002/stem.199
  32. Wolf XA, Rasmussen MA, Schauser K, Jensen AT, Schmidt M, Hyttel P. 2011. OCT4 expression in outgrowth colonies derived from porcine inner cell masses and epiblasts. Reprod. Domest. Anim. 46:385-392. https://doi.org/10.1111/j.1439-0531.2010.01675.x
  33. Wu Y, Chan CW, Nicholls JM, Liao S, Tse HF, Wu EX. 2009. MR study of the effect of infarct size and location on left ventricular functional and microstructural alterations in porcine models. J. Magn. Reson. Imaging 29:305-312. https://doi.org/10.1002/jmri.21598
  34. Ying QL, Nichols J, Chambers I, Smith A. 2003. BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell 115:281-292. https://doi.org/10.1016/S0092-8674(03)00847-X
  35. Zhang X and Godbey WT. 2006. Viral vectors for gene delivery in tissue engineering. Adv. Drug Deliv. Rev. 58:515-534. https://doi.org/10.1016/j.addr.2006.03.006