DOI QR코드

DOI QR Code

The relationship of skin disorders, COVID-19, and the therapeutic potential of ginseng: a review

  • Seoyoun, Yang (Molecular Dermatology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University) ;
  • Su Bin, Han (Molecular Dermatology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University) ;
  • Soohyun, Kang (Molecular Dermatology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University) ;
  • Junghyun, Lee (Molecular Dermatology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University) ;
  • Dongseon, Kim (Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University) ;
  • Anastasiia, Kozlova (Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University) ;
  • Minkyung, Song (T cell and Tumor Immunology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University) ;
  • See-Hyoung, Park (Department of Bio and Chemical Engineering, Hongik University) ;
  • Jongsung, Lee (Molecular Dermatology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University)
  • 투고 : 2022.08.04
  • 심사 : 2022.09.27
  • 발행 : 2023.01.02

초록

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has made significant impacts on global public health, including the development of several skin diseases that have arisen primarily as a result of the pandemic. Owing to the widespread expansion of coronavirus disease 19 (COVID-19), the development of effective treatments for these skin diseases is drawing attention as an important social issue. For many centuries, ginseng and its major active ingredients, ginsenosides and saponins, have been widely regarded as herbal medicines. Further, the anti-viral action of ginseng suggests its potential effectiveness as a therapeutic agent against COVID-19. Thus, the aim of this review was to examine the association of skin lesions with COVID-19 and the effect of ginseng as a therapeutic agent to treat skin diseases induced by COVID-19 infection. We classified COVID-19-related skin disorders into three categories: caused by inflammatory, immune, and complex (both inflammatory and immune) responses and evaluated the evidence for ginseng as a treatment for each category. This review offers comprehensive evidence on the improvement of skin disorders induced by SARS-CoV-2 infection using ginseng and its active constituents.

키워드

과제정보

This research was supported by a grant from the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and Technology Information and Communication (Grant No. 2020R1F1A1067731).

참고문헌

  1. Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. A novel coronavirus from patients with pneumonia in China. N Engl J Med 2019;382(2020):727-33.
  2. World Health Organization. Coronavirus disease 2019 (COVID-19): situation report, vol. 88. World Health Organization; 2020.
  3. Tahvildari A, Arbabi M, Farsi Y, Jamshidi P, Hasanzadeh S, Calcagno TM, et al. Clinical features, diagnosis, and treatment of COVID-19 in hospitalized patients: a systematic review of case reports and case series. Front Med 2020;7:231. https://doi.org/10.21664/2238-8869.2018v7i3.p231-244
  4. Tisminetzky M, Delude C, Hebert T, Carr C, Goldberg RJ, Gurwitz JH. Age, multiple chronic conditions, and COVID-19: a literature review. The Journals of Gerontology: Series A 2022;77(4):872-8. https://doi.org/10.1093/gerona/glaa320
  5. Ou X, Liu Y, Lei X, Li P, Mi D, Ren L, Guo L, Guo R, Chen T, Hu J, et al. Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nature Communications 2020;11(1):1-12. https://doi.org/10.1038/s41467-019-13993-7
  6. Koch J, Uckeley ZM, Doldan P, Stanifer M, Boulant S, Lozach PY. TMPRSS2 expression dictates the entry route used by SARS-CoV-2 to infect host cells. The EMBO Journal 2021;40(16):e107821. https://doi.org/10.15252/embj.2021107821
  7. Trougakos Ioannis P, Stamatelopoulos Kimon, Terpos Evangelos, Tsitsilonis Ourania E, Aivalioti Evmorfa, Paraskevis Dimitrios, Kastritis Efstathios, Pavlakis George N, Dimopoulos Meletios A, et al. Insights to SARS-CoV-2 life cycle, pathophysiology, and rationalized treatments that target COVID-19 clinical complications. Journal of Biomedical Science 2021;28(1):1-18. https://doi.org/10.1186/s12929-020-00703-5
  8. Recalcati S. Cutaneous manifestations in COVID-19: a first perspective. J Eur Acad Dermatol Venereol JEADV 2020;26. Published online March.
  9. Zheng Y, Lai W. Dermatology staff participate in fight against Covid-19 in China. J Eur Acad Dermatol Venereol JEADV 2020;34(5):e210-1. Published online March 23. https://doi.org/10.1111/jdv.16390
  10. Darlenski R, Tsankov N. Covid-19 pandemic and the skin - what should dermatologists know? Clin Dermatol 2020;38(6):785-7. Published online March 24. https://doi.org/10.1016/j.clindermatol.2020.03.012
  11. Tammaro A, Adebanjo GaR, Parisella FR, Pezzuto A, Rello J. Cutaneous manifestations in COVID- 19: the experiences of barcelona and rome. J Eur Acad Dermatol Venereol JEADV 2020;34(7):e306-7. Published online April 24. https://doi.org/10.1111/jdv.16530
  12. Su C-J, Lee C-H. Viral exanthem in COVID-19, a clinical enigma with biological significance. J Eur Acad Dermatol Venereol JEADV 2020;34(6):e251-2. Published online April 15. https://doi.org/10.1111/jdv.16450
  13. Lee SE, Park YS. Korean Red Ginseng water extract inhibits COX-2 expression by suppressing p38 in acrolein-treated human endothelial cells. J Ginseng Res 2014;38(1):34-9. https://doi.org/10.1016/j.jgr.2013.11.004. Epub 2013 Dec 8. PMID: 24558308; PMCID: PMC3915333.
  14. Wee JJ, Mee Park K, Chung AS. Biological activities of ginseng and its application to human health. In: Benzie IFF, Wachtel-Galor S, editors. Herbal medicine: biomolecular and clinical aspects. 2nd ed. Boca Raton (FL): CRC Press/Taylor & Francis; 2011 [Chapter 8]. Available from:. https://www.ncbi.nlm.nih.gov/books/NBK92776/.
  15. Liang LD, He T, Du TW, Fan YG, Chen DS, Wang Y. Ginsenoside-Rg5 induces apoptosis and DNA damage in human cervical cancer cells. Molecular Medicine Reports 2015;11(2):940-6. https://doi.org/10.3892/mmr.2014.2821.
  16. Wong AS, Che CM, Leung KW. Recent advances in ginseng as cancer therapeutics: a functional and mechanistic overview. Natural Product Reports 2015;32(2):256-72. https://doi.org/10.1039/c4np00080c.
  17. Lee DC, Lau AS. Effects of Panax ginseng on tumor necrosis factor-a-mediated inflammation: a mini-review. Mar 30 Molecules 2011;16(4):2802-16. https://doi.org/10.3390/molecules16042802. . PMID: 21455094; PMCID: PMC6260618.
  18. Ji-Ye Kee, et al. Korean Red Ginseng improves atopic dermatitis-like skin lesions by suppressing expression of proinflammatory cytokines and chemokines in vivo and in vitro.". Journal of Ginseng Research 2017;41(2):134-43. https://doi.org/10.1016/j.jgr.2016.02.003
  19. Sohn E-H, Jang S-A, Lee C-H, Jang K-H, Kang S-C, Park H-J, et al. Effects of Korean red ginseng extract for the treatment of atopic dermatitis-like skin lesions in mice. Journal of Ginseng Research 2011:479-86. Elsevier BV. https://doi.org/10.5142/jgr.2011.35.4.479
  20. Lee Joon Kee, Cho Eun Young, Lee Hyunju. Multisystem inflammatory syndromein children (MIS-C). Aug Pediatr Infect Vaccine 2021;28(2):66-81. Korean. Published online, . [Accessed 26 August 2021]. https://doi.org/10.14776/piv.2021.28.e13
  21. Rizzetto G, Diotallevi F, Campanati A, Radi G, Bianchelli T, Molinelli E, Mazzanti S, Offidani A. Telogen effluvium related to post severe Sars-Cov-2 infection: clinical aspects and our management experience. Dermatol Ther 2021;34(1):e14547. Jan. https://doi.org/10.1111/dth.14547
  22. Olds H, Liu J, Luk K, Lim HW, Ozog D, Rambhatla PV. Telogen effluvium associated with COVID-19 infection. Dermatologic Therapy 2021;34(2):e14761. https://doi.org/10.1111/dth.14761
  23. Rabaan AA, Al-Ahmed SH, Muhammad J, Khan A, Sule AA, Tirupathi R, Mutair AA, Alhumaid S, Al-Omari A, Dhawan M, et al. Role of inflammatory cytokines in COVID-19 patients: a review on molecular mechanisms, immune functions, immunopathology and immunomodulatory drugs to counter cytokine storm. Vaccines (Basel) 2021;9(5):436. Apr 29. https://doi.org/10.3390/vaccines9050436
  24. Conti P, Ronconi G, Caraffa A, Gallenga CE, Ross R, Frydas I, Kritas SK. Induction of pro-inflammatory cytokines (IL-1 and IL-6) and lung inflammation by Coronavirus-19 (COVI-19 or SARS-CoV-2): anti-inflammatory strategies. J Biol Regul Homeost Agents 2020;34(2):327-31. March-April.
  25. Rossi A, Magri F, Sernicola A, Michelini S, Caro G, Muscianese M, Grieco T. Telogen effluvium after SARS-CoV-2 infection: a series of cases and possible pathogenetic mechanisms. Skin Appendage Disorders 2021;7(5):377-81. https://doi.org/10.1159/000517223
  26. Darif D, Hammi I, Kihel A, El Idrissi Saik I, Guessous F, Akarid K. The pro-inflammatory cytokines in COVID-19 pathogenesis: what goes wrong? Microb Pathog 2021;153:104799. Apr. https://doi.org/10.1016/j.micpath.2021.104799
  27. Choi BY. Hair-growth potential of ginseng and its major metabolites: a review on its molecular mechanisms. International Journal of Molecular Sciences 2018;19(9):2703. https://doi.org/10.3390/ijms19092703
  28. Nakra NA, Blumberg DA, Herrera-Guerra A, Lakshminrusimha S. Multi-system inflammatory syndrome in children (MIS-C) following SARS-CoV-2 infection: review of clinical presentation, hypothetical pathogenesis, and proposed management. Children 2020;7(7):69. https://doi.org/10.3390/children7070069
  29. Ahn H, Han BC, Kim J, Kang SG, Kim PH, Jang KH, Lee GS. Nonsaponin fraction of Korean Red Ginseng attenuates cytokine production via inhibition of TLR4 expression. Journal of Ginseng Research 2019;43(2):291-9. https://doi.org/10.1016/j.jgr.2018.03.003
  30. DeHaven Charlene. Mechanisms of exfoliation. 2015.
  31. Has C. Peeling skin disorders: a paradigm for skin desquamation. Journal of Investigative Dermatology 2018;138(8):1689-91. https://doi.org/10.1016/j.jid.2018.05.020
  32. Li Z, Jiang R, Jing C, Liu J, Xu X, Sun L, Zhao D. Protective effect of oligosaccharides isolated from Panax ginseng CA Meyer against UVB-induced skin barrier damage in BALB/c hairless mice and human keratinocytes. Journal of Ethnopharmacology 2022;283:114677. https://doi.org/10.1016/j.jep.2021.114677
  33. Deng J, Ngo T, Zhu TH, Halverstam C. Telogen effluvium, Beau lines, and acral peeling associated with COVID-19 infection. JAAD Case Reports 2021;13:138-40. https://doi.org/10.1016/j.jdcr.2021.05.026
  34. Neri I, Guglielmo A, Virdi A, Gaspari V, Starace M, Piraccini B. The red half-moon nail sign: a novel manifestation of coronavirus infection. Journal of the European Academy of Dermatology and Venereology 2020;34(11):e663-5. https://doi.org/10.1111/jdv.16747
  35. Zhang Y, Sun K, Liu YY, Zhang YP, Hu BH, Chang X, Han JY. Ginsenoside Rb1 ameliorates lipopolysaccharide-induced albumin leakage from rat mesenteric venules by intervening in both trans-and paracellular pathway. American Journal of Physiology-Gastrointestinal and Liver Physiology 2014;306(4):G289-300. https://doi.org/10.1152/ajpgi.00168.2013
  36. Lee HJ, Kim BM, Lee SH, Sohn JT, Choi JW, Cho CW, Kim HJ. Ginseng-induced changes to blood vessel dilation and the metabolome of rats. Nutrients 2020;12(8):2238. https://doi.org/10.3390/nu12082238
  37. Shams S, Rathore SS, Anvekar P, Sondhi M, Kancherla N, Tousif S, Rojas GA, Ahmed NK, Munawwar M, Noman M. Maculopapular skin eruptions associated with Covid-19: a systematic review. Mar Dermatol Ther 2021;34(2):e14788. https://doi.org/10.1111/dth.14788. Epub 2021 Feb 2. PMID: 33481314; PMCID: PMC7995033.
  38. Zhao Q, Fang X, Pang Z, Zhang B, Liu H, Zhang F. COVID-19 and cutaneous manifestations: a systematic review. Nov J Eur Acad Dermatol Venereol 2020;34(11):2505-10. https://doi.org/10.1111/jdv.16778
  39. Kang Eun Hae. Sarcoidosis in Korea: revisited. Journal of the Korean Medical Association 2008;51(10):925-32. https://doi.org/10.5124/jkma.2008.51.10.925
  40. Kim JH, Yi YS, Kim MY, Cho JY. Role of ginsenosides, the main active components of Panax ginseng, in inflammatory responses and diseases. Oct J Ginseng Res 2017;41(4):435-43. https://doi.org/10.1016/j.jgr.2016.08.004. Epub 2016 Aug 18. PMID: 29021688; PMCID: PMC5628327.
  41. Jung JS, Kim DH, Kim HS. Ginsenoside Rh1 suppresses inducible nitric oxide synthase gene expression in IFN-γ-stimulated microglia via modulation of JAK/STAT and ERK signaling pathways. Biochem Biophys Res Commun 2010;397(2):323-8. Jun 25. https://doi.org/10.1016/j.bbrc.2010.05.117
  42. Magro CM, Mulvey JJ, Laurence J, Sanders S, Crowson AN, Grossman M, Harp J, Nuovo G. The differing pathophysiologies that underlie COVID-19-associated perniosis and thrombotic retiform purpura: a case series. Br J Dermatol 2021;184(1):141-50. Jan. https://doi.org/10.1111/bjd.19415
  43. Toader MP, Branisteanu DC, Glod M, Esanu IM, Branisteanu CI, Capsa MS, Dimitriu A, Nicolescu AC, Pinzariu AC, Branisteanu DE. Mucocutaneous lesions associated with SARS-CoV-2 infection (Review). Exp Ther Med 2022;23(4):258. Apr. https://doi.org/10.3892/etm.2022.11183
  44. Im K, Kim J, Min HJ. Ginseng, the natural effectual antiviral: protective effects of Korean Red Ginseng against viral infection. Ginseng Res. 2016;40(4):309-14. Oct. https://doi.org/10.1016/j.jgr.2015.09.002
  45. Ahmed H, Yusuf N. The cutaneous manifestations associated with COVID-19: a review. Am J Dermatol Res Rev 2020;3:31.
  46. Toader MP, Branisteanu DC, Glod M, Esanu IM, Branisteanu CI, Capsa MS, Dimitriu A, Nicolescu AC, Pinzariu AC, Branisteanu DE. Mucocutaneous lesions associated with SARS-CoV-2 infection (Review). Experimental and Therapeutic Medicine 2022;23(4):258. https://doi.org/10.3892/etm.2022.11183.
  47. Genovese G, Moltrasio C, Berti E, Marzano AV. Skin manifestations associated with COVID-19: current knowledge and future perspectives. Dermatology 2021;237(1):1-12. https://doi.org/10.1159/000512932
  48. Xue X, Mi Z, Wang Z, Pang Z, Liu H, Zhang F. High expression of ACE2 on keratinocytes reveals skin as a potential target for SARS-CoV-2. J Invest Dermatol 2021;141(1):206-209.e1. Jan. https://doi.org/10.1016/j.jid.2020.05.087
  49. Possibility as role of ginseng and ginsenosides on inhibiting the heart disease of COVID-19: a systematic review. Hossain MA, Kim JH. J Ginseng Res 2022;46(3):321-30. May. https://doi.org/10.1016/j.jgr.2022.01.003
  50. Khashayar Aram,Anant Patil,Mohamad Goldust,Fateme Rajabi COVID-19 and exacerbation of dermatological diseases: a review of the available literature Dermatologic Therapy First published: 27 August 2021.
  51. Bosch-Amate X, Giavedoni P, Podlipnik S, Andreu-Febrer C, Sanz-Beltran J, Garcia-Herrera A, Alos L, Mascaro JM. Retiform purpura as a dermatological sign of coronavirus disease 2019 (COVID-19) coagulopathy. J Eur Acad Dermatol Venereol 2020;34(10):e548-9. https://doi.org/10.1111/jdv.16689
  52. Wang J, Jiang M, Chen X, Montaner LJ. Cytokine storm and leukocyte changes in mild versus severe SARS-CoV-2 infection: review of 3939 COVID-19 patients in China and emerging pathogenesis and therapy concepts. J Leukoc Biol 2020;108(1):17-41. Jul. https://doi.org/10.1002/JLB.3COVR0520-272R
  53. Lee YY, Quah Y, Shin JH, Kwon HW, Lee DH, Han JE, Park JK, Kim SD, Kwak D, Park SC, et al. COVID-19 and Panax ginseng: targeting platelet aggregation, thrombosis and the coagulation pathway. J Ginseng Res 2022;46(2):175-82. Mar. https://doi.org/10.1016/j.jgr.2022.01.002
  54. Choi JH, Lee YH, Kwon TW, Ko SG, Nah SY, Cho IH. Can Panax ginseng help control cytokine storm in COVID-19? J Ginseng Res 2022;46(3):337-47. May. https://doi.org/10.1016/j.jgr.2022.02.006
  55. Idiopathic thrombocytopenic purpura-JOHNS HOPKINS medicine.
  56. Bahadoram M, Saeedi-Boroujeni A, Mahmoudian-Sani MR, Hussaini H, Hassanzadeh S. COVID-19-induced immune thrombocytopenic purpura; Immunopathogenesis and clinical implications. Infez Med 2022;30(1):41-50. Mar 1. https://doi.org/10.53854/liim-3001-5
  57. Ji X, Zhang L, Peng J, Hou M. T cell immune abnormalities in immune thrombocytopenia. J Hematol Oncol 2014;7:72. https://doi.org/10.1186/s13045-014-0072-6
  58. Takahashi N, Saitoh T, Gotoh N, Nitta Y, Alkebsi L, Kasamatsu T, Minato Y, Yokohama A, Tsukamoto N, Handa H, et al. The cytokine polymorphisms affecting Th1/Th2 increase the susceptibility to, and severity of, chronic ITP. BMC Immunol 2017;18(1):26. https://doi.org/10.1186/s12865-017-0210-3
  59. Yi YS. Potential benefits of ginseng against COVID-19 by targeting inflamemasomes. J Ginseng Res. 2022. https://doi.org/10.1016/j.jgr.2022.03.008. Apr 4. In press.
  60. Jhun J, Lee J, Byun JK, Kim EK, Woo JW, Lee JH, Kwok SK, Ju JH, Park KS, Kim HY, et al. Red ginseng extract ameliorates autoimmune arthritis via regulation of STAT3 pathway, Th17/Treg balance, and osteoclastogenesis in mice and human. Mediators Inflamm 2014;2014:351856. https://doi.org/10.1155/2014/351856
  61. Wei JR, Wen X, Bible PW, Li Z, Nussenblatt RB, Wei L. Panax notoginseng saponin controls IL-17 expression in helper T cells. J Ocul Pharmacol Ther 2017;33(4):285-9. May. https://doi.org/10.1089/jop.2016.0137
  62. Park YJ, Cho M, Choi G, Na H, Chung Y. Biomolecules. A Critical Regulation of Th17 Cell Responses and Autoimmune Neuro-Inflammation by Ginsenoside Rg3 2020;10(1):122. Jan 10.
  63. Kang JH. Febrile illness with skin rashes. Infect Chemother 2015 Sep;47(3):155-66. https://doi.org/10.3947/ic.2015.47.3.155
  64. Signore A, Lauri C, Colandrea M, Di Girolamo M, Chiodo E, Grana CM, Campagna G, Aceti A. Lymphopenia in patients affected by SARS-CoV-2 infection is caused by margination of lymphocytes in large bowel: an [18F] FDG PET/CT study. Eur J Nucl Med Mol Imaging 2022;49(10):3419-29. Aug. https://doi.org/10.1007/s00259-022-05801-0
  65. Bennardo L, Nistico SP, Dastoli S, Provenzano E, Napolitano M, Silvestri M, Passante M, Patruno C. Erythema multiforme and COVID-19: what do we know? Medicina 2021;57:828. https://doi.org/10.3390/medicina57080828
  66. Kim IK, Lee KY, Kang J, Park JS. Immune-modulating effect of Korean red ginseng by balancing the ratio of peripheral T lymphocytes in bile duct or pancreatic cancer patients with adjuvant chemotherapy. Jeong J. In Vivo. 2021;35(3):1895-900. May-Jun. https://doi.org/10.21873/invivo.12454
  67. Zheng ZY, Yu XL, Dai TY, Yin LM, Zhao YN, Xu M, Zhuang HF, Chong BH, Gao RL. Panaxdiol saponins component promotes hematopoiesis and modulates T lymphocyte dysregulation in aplastic anemia model mice. Chin J Integr Med 2019;25(12):902-10. Dec. https://doi.org/10.1007/s11655-019-3049-z
  68. keratinocytes HaCaT, Chang JW, Park KH, Hwang HS, Shin YS, Oh YT, Kim CH. Protective effects of Korean red ginseng against radiation-induced apoptosis in human. J Radiat Res 2014;55(2):245-56. Mar 1. https://doi.org/10.1093/jrr/rrt109
  69. Zhang Y, Cai W, Han G, Zhou S, Li J, Chen M, Li H. Panax notoginseng saponins prevent senescence and inhibit apoptosis by regulating the PI3K AKT mTOR pathway in osteoarthritic chondrocytes. Int J Mol Med 2020;45(4):1225-36. Apr. https://doi.org/10.3892/ijmm.2020.4491
  70. Sugiyama M, Wada Y, Kanazawa N, Tachibana S, Suzuki T, Matsumoto K, Iyoda M, Honda H, Shibata T. A cross-sectional analysis of clinicopathologic similarities and differences between Henoch-Schonlein purpura nephritis and IgA nephropathy. PLoS One 2020;15(4):e0232194. Apr 23. https://doi.org/10.1371/journal.pone.0232194
  71. Farooq H, Aemaz Ur Rehman M, Asmar A, Asif S, Mushtaq A, Qureshi MA. The pathogenesis of COVID-19-induced IgA nephropathy and IgA vasculitis: a systematic review. J Taibah Univ Med Sci 2022;17(1):1-13. J Taibah Univ Med Sci. https://doi.org/10.1016/j.jtumed.2021.08.012
  72. Wu CY, Hua KF, Hsu WH, Suzuki Y, Chu LJ, Lee YC, Takahata A, Lee SL, Wu CC, Nikolic-Paterson DJ, et al. IgA nephropathy benefits from compound K treatment by inhibiting NF-κB/NLRP3 inflammasome and enhancing autophagy and SIRT1. J Immunol 2020;205(1):202-12. Jul 1. https://doi.org/10.4049/jimmunol.1900284
  73. Di Altobrando A, La Placa M, Neri I, Piraccini BM, Vincenzi C. Contact dermatitis due to masks and respirators during COVID-19 pandemic: what we should know and what we should do. Dermatol Ther 2020;33(6):e14528. Nov. https://doi.org/10.1111/dth.14528
  74. Sarfraz Z, Sarfraz A, Sarfraz M, Felix M, Bernstein JA, Fonacier L, CherrezOjeda I. Contact dermatitis due to personal protective equipment use and hygiene practices during the COVID-19 pandemic: a systematic review of case reports. Ann Med Surg (Lond). 2022;74:103254. https://doi.org/10.1016/j.amsu.2022.103254
  75. Imbesi S, Minciullo PL, Isola S, Gangemi S. Allergic contact dermatitis: immune system involvement and distinctive clinical cases. Allergol Immunopathol (Madr) 2011;39(6):374-7. Nov-Dec. https://doi.org/10.1016/j.aller.2011.05.001
  76. Cho M, Choi G, Shim I, Chung Y. Enhanced Rg3 negatively regulates Th1 cell responses. J Ginseng Res 2019;43(1):49-57. Jan. https://doi.org/10.1016/j.jgr.2017.08.003
  77. Rivera E, Ekholm Pettersson F, Inganas M, Paulie S, Gronvik KO. The Rb1 fraction of ginseng elicits a balanced Th1 and Th2 immune response. Vaccine 2005;23(46-47):5411-9. Nov 16. https://doi.org/10.1016/j.vaccine.2005.04.007
  78. Gao Y, Li J, Chu S, Zhang Z, Chen N, Li L, Zhang L. Ginsenoside Rg1 protects mice against streptozotocin-induced type 1 diabetic by modulating the NLRP3 and Keap1/Nrf2/HO-1 pathways. Eur J Pharmacol 2020;866:172801. Jan 5. https://doi.org/10.1016/j.ejphar.2019.172801
  79. Reinholz M, Kendziora B, Frey S, Oppel EM, Rueff F, Clanner-Engelshofen BM, Heppt MV, French LE, Wollenberg A. Increased prevalence of irritant hand eczema in health care workers in a dermatological clinic due to increased hygiene measures during the SARS-CoV-2 pandemic. European Journal of Dermatology : EJD 2021;31(3):392-5. https://doi.org/10.1684/ejd.2021.4046.
  80. Shahidi Dadras M, Diab R, Ahadi M, Abdollahimajd F. Generalized pustular psoriasis following COVID-19. Dermatol Ther 2021 Jan;34(1):e14595. https://doi.org/10.1111/dth.14595
  81. Fujita H, Gooderham M, Romiti R. Diagnosis of generalized pustular psoriasis. Am J Clin Dermatol 2022;23(Suppl 1):31-8. Jan. https://doi.org/10.1007/s40257-021-00652-1
  82. Pustular Psoriasis Shah M, Al Aboud DM, Crane JS, Kumar S. In: StatPearls; 2022. May 8.
  83. Liu ZJ, Tian YT, Shi BY, Zhou Y, Jia XS. Association between mutation of interleukin 36 receptor antagonist and generalized pustular psoriasis: a PRISMA-compliant systematic review and meta-analysis. Medicine (Baltimore) 2020;99(45):e23068. Nov 6. https://doi.org/10.1097/MD.0000000000023068
  84. Marrakchi S, Guigue P, Renshaw BR, Puel A, Pei XY, Fraitag S, Zribi J, Bal E, Cluzeau C, Chrabieh M, et al. Interleukin-36-receptor antagonist deficiency and generalized pustular psoriasis. Smahi N Engl J Med 2011;365(7):620-8. Aug 18. https://doi.org/10.1056/NEJMoa1013068
  85. Lopez-Camarillo C, Ocampo EA, Casamichana ML, Perez-Plasencia C, Alvarez-Sanchez E, Marchat LA. Protein kinases and transcription factors activation in response to UV-radiation of skin: implications for carcinogenesis. Int J Mol Sci 2012;13(1):142-72.
  86. Krueger J, Puig L, Thaci D. Treatment options and goals for patients with generalized pustular psoriasis. Am J Clin Dermatol 2022;23(Suppl 1):51-64. Jan. https://doi.org/10.1007/s40257-021-00658-9
  87. Bozonnat A, Assan F, LeGoff J, Bourrat E, Bachelez H. SARS-CoV-2 infection inducing severe flare up of Deficiency of Interleukin Thirty-six (IL-36) Receptor Antagonist (DITRA) resulting from a mutation invalidating the activating cleavage site of the IL-36 receptor antagonist. J Clin Immunol 2021;41(7):1511-4. Oct. https://doi.org/10.1007/s10875-021-01076-6
  88. Wang YS, Zhu H, Li H, Li Y, Zhao B, Jin YH. Ginsenoside compound K inhibits nuclear factor-kappa B by targeting Annexin A2. J Ginseng Res 2019;43(3):452-9. Jul. https://doi.org/10.1016/j.jgr.2018.04.002
  89. Song SB, Tung NH, Quang TH, Ngan NT, Kim KE, Kim YH. Inhibition of TNF-α-mediated NF-κB transcriptional activity in HepG2 cells by dammarane-type saponins from Panax ginseng leaves. J Ginseng Res 2012;36(2):146-52. Apr. https://doi.org/10.5142/jgr.2012.36.2.146
  90. Xu XY, Yi ES, Kang CH, Liu Y, Lee YG, Choi HS, Jang HB, Huo Y, Baek NI, Yang DC, et al. Whitening and inhibiting NF-κB-mediated inflammation properties of the biotransformed green ginseng berry of new cultivar K1, ginsenoside Rg2 enriched, on B16 and LPS-stimulated RAW 264.7 cells. J Ginseng Res 2021;45(6):631-41. Nov. https://doi.org/10.1016/j.jgr.2021.02.007
  91. Fangyu Li, Shuyan Lu, Limei Ren, Shuai Bian, Meichen Liu, Daqing Zhao, Siming Wang, Jiawen Wang. Ginseng root extract attenuates inflammation by inhibiting the MAPK/NF-κB signaling pathway and activating autophagy and p62-Nrf2-Keap1 signaling in vitro and in vivo Song Yang. Journal Of Ethnopharmacology Volume 2022;283(30 January):114739. https://doi.org/10.1016/j.jep.2021.114739
  92. Ji-Su Shin, Jong-Myoung Kim, Won-Gun An. Anti-inflammatory effect of red ginseng through regulation of MAPK in lipopolysaccharide-stimulated RAW264.7. Journal of Physiology & Pathology in Korean Medicine 2012;26(3):293-300. Jun.
  93. Sun M, Ji Y, Li Z, Chen R, Zhou S, Liu C, Du M. Ginsenoside Rb3 inhibits proinflammatory cytokines via MAPK/AKT/NF-κB pathways and attenuates rat alveolar bone resorption in response to porphyromonas gingivalis LPS. Molecules. 2020;25(20):4815. Oct 20. https://doi.org/10.3390/molecules25204815
  94. Skroza N, Tolino E, Mambrin A, Zuber S, Balduzzi V, Marchesiello A, Bernardini N, Proietti I, Potenza C. Adult acne versus adolescent acne: a retrospective study of 1,167 patients. J Clin Aesthet Dermatol 2018;11(1):21-5. Jan. https://doi.org/10.1155/2018/9489163
  95. Mollerup, Sarah. Propionibacterium Acnes: Disease-causing agent or common contaminant? Detection in diverse patient samples by next-generation sequencing. Clinical Microbiology 2016;54(4):980-7. https://doi.org/10.1128/JCM.02723-15
  96. Kim Jenny, Ochoa Maria-Teresa, Krutzik Stephan R, Takeuchi Osamu, Uematsu Satoshi, Legaspi Annaliza J, Brightbill Hans D, Holland Diana, Cunliffe William J, Akira Shizuo, et al. Activation of toll-like receptor 2 in acne triggers inflammatory cytokine responses. J Immunol 2002;169:1535-41. https://doi.org/10.4049/jimmunol.169.3.1535
  97. Mastrofrancesco Arianna, Kokot Agatha, Eberle Alex, Gibbons Nicholas CJ, Schallreuter Karin U, Strozyk Elwira, Picardo Mauro, Zouboulis Christos C, Luger Thomas A, et al. KdPT, a tripeptide derivative of alpha-melanocyte-stimulating hormone, suppresses IL-1 beta-mediated cytokine expression and signaling in human sebocytes. J Immunol 2010;185:1903-11. https://doi.org/10.4049/jimmunol.0902298
  98. Qin, Min. Propionibacterium acnes Induces IL-1β secretion via the NLRP3 inflammasome in human monocytes.". The Journal of Investigative Dermatology 2014;134(2):381-8. https://doi.org/10.1038/jid.2013.309
  99. Yi YS. Ameliorative effects of ginseng and ginsenosides on rheumatic diseases. J Ginseng Res 2019;43(3):335-41. Jul. https://doi.org/10.1016/j.jgr.2018.04.004
  100. Shi Y, Wang H, Zheng M, Xu W, Yang Y, Shi F. Ginsenoside Rg3 suppresses the NLRP3 inflammasome activation through inhibition of its assembly. FASEB J 2020;34(1):208-21. Jan. https://doi.org/10.1096/fj.201901537r
  101. Korean red ginseng extracts inhibit NLRP3 and AIM2 inflammasome activation." Kim, Jeeyoung et al. Immunology Letters 2014;158:1-2. 143-50. https://doi.org/10.1016/j.imlet.2013.12.017
  102. Abdali S, Yu J. Occupational dermatoses related to personal protective equipment used during the COVID-19 pandemic. Dermatol Clin 2021;39(4):555-68. Oct. https://doi.org/10.1016/j.det.2021.05.009
  103. Yaqoob Sadia, et al. Association of acne with face mask in healthcare workers amidst the COVID-19 outbreak in karachi, Pakistan. Clinical, Cosmetic and Investigational Dermatology 2021;14:1427-33. https://doi.org/10.2147/CCID.S333221
  104. Purushothaman PK, Priyangha E, Vaidhyswaran R. Effects of prolonged use of facemask on healthcare workers in tertiary care hospital during COVID-19 pandemic. Indian J Otolaryngol Head Neck Surg 2021;73(1):59-65. Mar. https://doi.org/10.1007/s12070-020-02124-0
  105. Damiani Giovanni, Gironi Laura C, Grada Ayman, Kridin Khalaf, Finelli Renata, Buja Alessandra, Bragazzi Nicola L, Pigatto Paolo DM, Savoia Paola. COVID-19 related masks increase severity of both acne (maskne) and rosacea (mask rosacea): multi-center, real-life, telemedical, and observational prospective study. Dermatologic Therapy 2021;34(2):e14848. https://doi.org/10.1111/dth.14848
  106. Donnarumma M, Nocerino M, Lauro W, Annunziata MC, Marasca C, Fabbrocini G. Isotretinoin in acne treatment during the coronavirus disease 2019 (COVID-19): a retrospective analysis of adherence to therapy and side effects. Dermatol Ther. 2021;34(1):e14677. Jan. https://doi.org/10.1111/dth.14677
  107. Hossain MA, Kim JH. Possibility as role of ginseng and ginsenosides on inhibiting the heart disease of COVID-19: a systematic review. J Ginseng Res 2022 May;46(3):321-30. https://doi.org/10.1016/j.jgr.2022.01.003
  108. Buddenkotte J, Steinhoff M. Recent advances in understanding and managing rosacea. F1000Res, vol. 7; 2018. Dec 3 F1000 Faculty Rev-1885. https://doi.org/10.12688/f1000research.11831.1
  109. Del Rosso JQ. Advances in understanding and managing rosacea: part 1: connecting the dots between pathophysiological mechanisms and common clinical features of rosacea with emphasis on vascular changes and facial erythema. J Clin Aesthet Dermatol 2012;5(3):16-25. Mar.
  110. Possibility as role of ginseng and ginsenosides on inhibiting the heart disease of COVID-19: a systematic review." hossain, mohammad amjad, and jong-hoon kim. Journal of Ginseng Research 2022;46(3):321-30. 17 Jan. https://doi.org/10.1016/j.jgr.2022.01.003
  111. Song J, Xian D, Yang L, Xiong X, Lai R, Zhong J. Pruritus: progress toward pathogenesis and treatment. Biomed Res Int 2018;2018:9625936. Apr 11. https://doi.org/10.1155/2018/9625936
  112. Han L, Dong X. Itch mechanisms and circuits. Annu Rev Biophys 2014;43:331-55. https://doi.org/10.1146/annurev-biophys-051013-022826
  113. Jeffry J, Kim S, Chen ZF. Itch signaling in the nervous system. Physiology (Bethesda) 2011;26(4):286-92. Aug. https://doi.org/10.1152/physiol.00007.2011
  114. Steinhoff M, Buddenkotte J, Aubert J, Sulk M, Novak P, Schwab VD, Mess C, Cevikbas F, Rivier M, Carlavan I, et al. The journal of investigative dermatology. Clinical, Cellular, and Molecular Aspects in the Pathophysiology of rosacea Symposium Proceedings 2011;15(1):2-11.
  115. Jang Y, Lee WJ, Hong GS, Shim WS. Red ginseng extract blocks histamine-dependent itch by inhibition of H1R/TRPV1 pathway in sensory neurons. Journal of Ginseng Research 2015;39(3):257-64. https://doi.org/10.1016/j.jgr.2015.01.004
  116. Zuberbier UrticariaT. Journal of the European Academy of Dermatology and Venereology First Published 2003;87(3):196-205. 03 November.
  117. Abuelgasim Eyad, et al. Management of urticaria in COVID-19 patients: a systematic review. Dermatologic Therapy 2021;34(1):e14328. https://doi.org/10.1111/dth.14328
  118. Muntean IA, Pintea I, Bocsan IC, Dobrican CT, Deleanu D. COVID-19 disease leading to chronic spontaneous urticaria exacerbation: a Romanian retrospective study. Healthcare (Basel) 2021;9(9):1144. Sep. 1. https://doi.org/10.3390/healthcare9091144
  119. Pro-resolving effect of ginsenosides as an anti-inflammatory mechanism of Panax ginseng. Im, Dong-Soon. Biomolecules 2020;10:3-444. 13 Mar. https://doi.org/10.3390/biom10030444
  120. Hand Hygiene Habits and Prevalence of Hand Eczema During the COVID-19 Pandemic, Techasatian L, Thaowandee W, Chaiyarit J, Uppala R, Sitthikarnkha P, Paibool W, Charoenwat B, Wongmast P, Laoaroon N, Suphakunpinyo C, et al. J Prim Care Community Health 2021;12:21501327211018013. Jan-Dec. https://doi.org/10.1177/21501327211018013
  121. Alkhalifah Azzam. Risk factors for hand eczema in the general population of Saudi Arabia during the COVID-19 pandemic: an internet-based cross-sectional study. JAAD International Volume 2022;6:119-24. March. https://doi.org/10.1016/j.jdin.2021.12.011
  122. Klonowska J, Glen J, Nowicki RJ, Trzeciak M. New cytokines in the pathogenesis of atopic dermatitis-new therapeutic targets. Int J Mol Sci 2018;19(10):3086. Oct 9. https://doi.org/10.3390/ijms19103086