DOI QR코드

DOI QR Code

A systematic exploration of ginsenoside Rg5 reveals anti-inflammatory functions in airway mucosa cells

  • Hyojin, Heo (Department of Applied Biotechnology, Ajou University) ;
  • Yumin, Kim (Korea Bioinformation Center, Korea Research Institute of Bioscience & Biotechnology) ;
  • Byungsun, Cha (Department of Biological Sciences, Ajou University) ;
  • Sofia, Brito (Department of Applied Biotechnology, Ajou University) ;
  • Haneul, Kim (Department of Biological Sciences, Ajou University) ;
  • Hyunjin, Kim (Department of Biological Sciences, Ajou University) ;
  • Bassiratou M., Fatombi (Department of Biological Sciences, Ajou University) ;
  • So Young, Jung (Department of Applied Biotechnology, Ajou University) ;
  • So Min, Lee (Department of Biological Sciences, Ajou University) ;
  • Lei, Lei (Department of Biological Sciences, Ajou University) ;
  • Sang Hun, Lee (Department of Biological Sciences, Ajou University) ;
  • Geon-woo, Park (Department of Applied Biotechnology, Ajou University) ;
  • Byeong-Mun, Kwak (Department of Meridian and Acupoint, College of Korean Medicine, Semyung University) ;
  • Bum-Ho, Bin (Department of Applied Biotechnology, Ajou University) ;
  • Ji-Hwan, Park (Korea Bioinformation Center, Korea Research Institute of Bioscience & Biotechnology) ;
  • Mi-Gi, Lee (Bio-Center, Gyeonggi-do Business and Science Accelerator)
  • 투고 : 2021.05.18
  • 심사 : 2022.06.20
  • 발행 : 2023.01.02

초록

Background: Hyperactivated airway mucosa cells overproduce mucin and cause severe breathing complications. Here, we aimed to identify the effects of saponins derived from Panax ginseng on inflammation and mucin overproduction. Methods: NCI-H292 cells were pre-incubated with 16 saponins derived from P. ginseng, and mucin overproduction was induced by treatment with phorbol 12-myristate 13-acetate (PMA). Mucin protein MUC5AC was quantified by enzyme-linked immunosorbent assay, and mRNA levels were analyzed using quantitative polymerase chain reaction (qPCR). Moreover, we performed a transcriptome analysis of PMA-treated NCI-H292 cells in the absence or presence of Rg5, and differential gene expression was confirmed using qPCR. Phosphorylation levels of signaling molecules, and the abundance of lipid droplets, were measured by western blotting, flow cytometry, and confocal microscopy. Results: Ginsenoside Rg5 effectively reduced MUC5AC secretion and decreased MUC5AC mRNA levels. A systematic functional network analysis revealed that Rg5 upregulated cholesterol and glycerolipid metabolism, resulting in the production of lipid droplets to clear reactive oxygen species (ROS), and modulated the mitogen-activated protein kinase and nuclear factor (NF)-kB signaling pathways to regulate inflammatory responses. Rg5 induced the accumulation of lipid droplets and decreased cellular ROS levels, and N-acetyl-ⳑ-cysteine, a ROS inhibitor, reduced MUC5AC secretion via Rg5. Furthermore, Rg5 hampered the phosphorylation of extracellular signal-regulated kinase and p38 proteins, affecting the NF-kB signaling pathway and pro-inflammatory responses. Conclusion: Rg5 alleviated inflammatory responses by reducing mucin secretion and promoting lipid droplet-mediated ROS clearance. Therefore, Rg5 may have potential as a therapeutic agent to alleviate respiratory disorders caused by hyperactivation of mucosa cells.

키워드

과제정보

We would like to thank Editage for the English language editing. The current study was supported by grants from the National Research Foundation of Korea (NRF) funded by the Korean government (MSIT) (grant no. 2019005607 to B.H.B. and grant no. 2020M3A9I6A01036057 to J.H.P.), the Rural Development Administration(grant no. PJ014868042022 by M.G.L.), the Korea Research Institute of Bioscience and Biotechnology (KRIBB) Research Initiative Program (grant no. KGM5422221 to J.H.P.), the Ajou University Research Fund (B.H.B.), and the Gyeonggido Business & Science Accelerator (GBSA) grant.

참고문헌

  1. Barnes PJ. The role of inflammation and anti-inflammatory medication in asthma. Respir Med 2002;96(Suppl):S9-15.  https://doi.org/10.1016/S0954-6111(02)90077-6
  2. Kesimer M, et al. Airway mucin concentration as a marker of chronic bronchitis. New England Journal of Medicine 2017;377(10):911-22.  https://doi.org/10.1056/NEJMoa1701632
  3. Bonser LR, Erle DJ. Airway mucus and asthma: the role of MUC5AC and MUC5B. J Clin Med 2017;6(12). 
  4. Rogers DF. Physiology of airway mucus secretion and pathophysiology of hypersecretion. Respir Care 2007;52(9):1134-46. discussion 1146-9. 
  5. Li J, Ye Z. The potential role and regulatory mechanisms of MUC5AC in chronic obstructive pulmonary disease. Molecules 2020;25(19):4437.  https://doi.org/10.3390/molecules25194437
  6. Kim V, et al. Persistent and newly developed chronic bronchitis are associated with worse outcomes in chronic obstructive pulmonary disease. Ann Am Thorac Soc 2016;13(7):1016-25.  https://doi.org/10.1513/AnnalsATS.201512-800OC
  7. Jin F, et al. Diclofenac inhibits phorbol ester-induced gene expression and production of MUC5AC mucin via affecting degradation of IkBa and translocation of NF-kB p65 in NCI-H292 cells. Biomol Ther (Seoul) 2020;28(5):431-6.  https://doi.org/10.4062/biomolther.2020.090
  8. Pan SY, et al. New perspectives on how to discover drugs from herbal medicines:CAM's outstanding contribution to modern therapeutics, vol. 2013. Evid Based Complement Alternat Med; 2013, 627375.  https://doi.org/10.1155/2013/627375
  9. Suntar I. Importance of ethnopharmacological studies in drug discovery: role of medicinal plants. Phytochemistry Reviews 2020;19(5):1199-209.  https://doi.org/10.1007/s11101-019-09629-9
  10. Hwang CR, et al. Changes in ginsenoside compositions and antioxidant activities of hydroponic-cultured ginseng roots and leaves with heating temperature. J Ginseng Res 2014;38(3):180-6.  https://doi.org/10.1016/j.jgr.2014.02.002
  11. Qi HY, Li L, Ma H. Cellular stress response mechanisms as therapeutic targets of ginsenosides. Med Res Rev 2018;38(2):625-54.  https://doi.org/10.1002/med.21450
  12. Leung KW, Wong AS. Pharmacology of ginsenosides: a literature review. Chin Med 2010;5:20.  https://doi.org/10.1186/1749-8546-5-20
  13. Kim TW, et al. Ginsenoside Rg5 ameliorates lung inflammation in mice by inhibiting the binding of LPS to toll-like receptor-4 on macrophages. Int Immunopharmacol 2012;12(1):110-6.  https://doi.org/10.1016/j.intimp.2011.10.023
  14. Feng SL, et al. Ginsenoside Rg5 overcomes chemotherapeutic multidrug resistance mediated by ABCB1 transporter: in vitro and in vivo study. J Ginseng Res 2020;44(2):247-57.  https://doi.org/10.1016/j.jgr.2018.10.007
  15. Li W, et al. Ginsenoside Rg5 ameliorates cisplatin-induced nephrotoxicity in mice through inhibition of inflammation, oxidative stress, and apoptosis. Nutrients 2016;8(9). 
  16. Lee YY, et al. Anti-inflammatory effect of ginsenoside Rg5 in lipopolysaccharide-stimulated BV2 microglial cells. Int J Mol Sci 2013;14(5):9820-33.  https://doi.org/10.3390/ijms14059820
  17. Carvalho BS, Irizarry RA. A framework for oligonucleotide microarray preprocessing. Bioinformatics 2010;26(19):2363-7.  https://doi.org/10.1093/bioinformatics/btq431
  18. Bolstad BM, et al. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 2003;19(2):185-93.  https://doi.org/10.1093/bioinformatics/19.2.185
  19. Lee HJ, et al. Direct transfer of alpha-synuclein from neuron to astroglia causes inflammatory responses in synucleinopathies. J Biol Chem 2010;285(12):9262-72.  https://doi.org/10.1074/jbc.M109.081125
  20. Hwang D, et al. A data integration methodology for systems biology. Proc Natl Acad Sci U S A 2005;102(48):17296-301.  https://doi.org/10.1073/pnas.0508647102
  21. Huang da W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 2009;4(1):44-57.  https://doi.org/10.1038/nprot.2008.211
  22. Stark C, et al. BioGRID: a general repository for interaction datasets. Nucleic Acids Res 2006;34(issue):D535-9.  https://doi.org/10.1093/nar/gkj109
  23. Luck K, et al. A reference map of the human binary protein interactome. Nature 2020;580(7803):402-8.  https://doi.org/10.1038/s41586-020-2188-x
  24. Orchard S, et al. The MIntAct project-IntAct as a common curation platform for 11 molecular interaction databases. Nucleic Acids Res 2014;42(issue):D358-63.  https://doi.org/10.1093/nar/gkt1115
  25. Lopez Y, Nakai K, Patil A. HitPredict version 4: comprehensive reliability scoring of physical protein-protein interactions from more than 100 species. Oxford): Database; 2015. 2015. 
  26. Kotlyar M, et al. IID 2018 update: context-specific physical protein-protein interactions in human, model organisms and domesticated species. Nucleic Acids Res 2019;47(D1):D581-9.  https://doi.org/10.1093/nar/gky1037
  27. Szklarczyk D, et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 2019;47(D1):D607-13.  https://doi.org/10.1093/nar/gky1131
  28. Goel R, et al. Human protein reference database and human proteinpedia as discovery resources for molecular biotechnology. Mol Biotechnol 2011;48(1):87-95.  https://doi.org/10.1007/s12033-010-9336-8
  29. Salwinski L, et al. The database of interacting proteins: 2004 update. Nucleic Acids Res 2004;32:D449-51. Database issue).  https://doi.org/10.1093/nar/gkh086
  30. Bovolenta LA, Acencio ML, Lemke N. HTRIdb: an open-access database for experimentally verified human transcriptional regulation interactions. BMC Genomics 2012;13:405.  https://doi.org/10.1186/1471-2164-13-405
  31. Shannon P, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 2003;13(11):2498-504.  https://doi.org/10.1101/gr.1239303
  32. Attele AS, Wu JA, Yuan CS. Ginseng pharmacology: multiple constituents and multiple actions. Biochem Pharmacol 1999;58(11):1685-93.  https://doi.org/10.1016/S0006-2952(99)00212-9
  33. Piao X, et al. Advances In Saponin Diversity Of Panax Ginseng. Molecules 2020;25(15). 
  34. Lee JW, et al. Compound K ameliorates airway inflammation and mucus secretion through the regulation of PKC signaling in vitro and in vivo. J Ginseng Res 2022;46(3):496-504.  https://doi.org/10.1016/j.jgr.2021.12.008
  35. Xiao N, et al. Ginsenoside Rg5 inhibits succinate-associated lipolysis in adipose tissue and prevents muscle insulin resistance. Frontiers in Pharmacology 2017;8. 
  36. Song L, et al. Ginsenoside Rg5 inhibits cancer cell migration by inhibiting the nuclear factor-kB and erythropoietin-producing hepatocellular receptor A2 signaling pathways. Oncol Lett 2021;21(6):452.  https://doi.org/10.3892/ol.2021.12713
  37. Desmet C, et al. Selective blockade of NF-kB activity in airway immune cells inhibits the effector phase of experimental asthma. The Journal of Immunology 2004;173(9):5766-75.  https://doi.org/10.4049/jimmunol.173.9.5766
  38. Calven J, Ax E, Radinger M. The airway epithelium-A central player in asthma pathogenesis. Int J Mol Sci 2020;21(23). 
  39. Xiao C, et al. Defective epithelial barrier function in asthma. J Allergy Clin Immunol 2011;128(3):549-56. e1-556.  https://doi.org/10.1016/j.jaci.2011.05.038
  40. Amatngalim GD, Hiemstra PS. Airway epithelial cell function and respiratory host defense in chronic obstructive pulmonary disease. Chin Med J (Engl) 2018;131(9):1099-107.  https://doi.org/10.4103/0366-6999.230743
  41. Morgan BW, et al. Epidemiology and risk factors of asthma-chronic obstructive pulmonary disease overlap in low- and middle-income countries. J Allergy Clin Immunol 2019;143(4):1598-606.  https://doi.org/10.1016/j.jaci.2018.06.052
  42. Zinellu E, et al. Circulating biomarkers of oxidative stress in chronic obstructive pulmonary disease: a systematic review. Respir Res 2016;17(1):150.  https://doi.org/10.1186/s12931-016-0471-z
  43. Pelaia C, et al. Role of p38 mitogen-activated protein kinase in asthma and COPD: pathogenic aspects and potential targeted therapies. Drug Des Devel Ther 2021;15:1275-84.  https://doi.org/10.2147/DDDT.S300988
  44. Brightling C, Berry M, Amrani Y. Targeting TNF-alpha: a novel therapeutic approach for asthma. J Allergy Clin Immunol 2008;121(1):5-10. ; quiz 11-2.  https://doi.org/10.1016/j.jaci.2007.10.019
  45. Richards CD, et al. Regulation of IL-33 by oncostatin M in Mouse lung epithelial cells, vol. 2016. Mediators Inflamm; 2016, 9858374.  https://doi.org/10.1155/2016/9858374
  46. Banerjee A, Koziol-White C, Panettieri Jr R. p38 MAPK inhibitors, IKK2 inhibitors, and TNFa inhibitors in COPD. Curr Opin Pharmacol 2012;12(3):287-92.  https://doi.org/10.1016/j.coph.2012.01.016
  47. Chen H, et al. Lipid metabolism in chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis 2019;14:1009-18.  https://doi.org/10.2147/COPD.S196210
  48. Zhang F, et al. Stem-leaves of Panax as a rich and sustainable source of lesspolar ginsenosides: comparison of ginsenosides from Panax ginseng, American ginseng and Panax notoginseng prepared by heating and acid treatment. J Ginseng Res 2021;45(1):163-75.  https://doi.org/10.1016/j.jgr.2020.01.003
  49. Kwon SW, et al. Liquid chromatographic determination of less polar ginsenosides in processed ginseng. J Chromatogr A 2001;921(2):335-9.  https://doi.org/10.1016/S0021-9673(01)00869-X
  50. Feng J, et al. Comparison of the anti-inflammatory effects of different polar ginsenosides on rheumatoid arthritis. Industrial Crops and Products 2022;181:114845.  https://doi.org/10.1016/j.indcrop.2022.114845
  51. Nag SA, et al. Ginsenosides as anticancer agents: in vitro and in vivo activities, structure-activity relationships, and molecular mechanisms of action. Front Pharmacol 2012;3:25.  https://doi.org/10.3389/fphar.2012.00025
  52. Shin Y-W, , B.E.-A., Han M-J, Kim D-H. Metabolism of ginsenoside Rg5, a main constituent isolated from RedGinseng, by human intestinal microflora and their antiallergic effect. Journal of Microbiology and Biotechnology 2006;16(11):1791-8. 
  53. Ma C, et al. Pharmacokinetic studies of ginsenosides Rk1 and Rg5 in rats by UFLCeMS/MS. Biomedical Chromatography 2021;35(8):e5108. https://doi.org/10.1002/bmc.5108