DOI QR코드

DOI QR Code

Protective role of Ginseng in endomertriosis during covid-19

  • JiHyeon, Song (Department of Integrative Bioscience and Biotechnology, College of Life Science, Sejong University) ;
  • YoungJoo, Lee (Department of Integrative Bioscience and Biotechnology, College of Life Science, Sejong University)
  • 투고 : 2022.05.25
  • 심사 : 2022.08.01
  • 발행 : 2023.03.02

초록

The coronavirus disease 2019 (COVID) pandemic began in December 2019. Many countries have implemented restrictions such as mandatory mask wearing and social distancing. These measures have caused diverse and complex health problems, particularly in women's health, anxiety, and depression. This review examines an alternative approach to the treatment of endometriosis during the COVID pandemic. The efficacy of ginseng with anti-inflammatory activity and ability to relieve or prevent symptoms of endometriosis is discussed and reviewed.

키워드

과제정보

This research was supported by 2020 grant from The Korean Society of Ginseng.

참고문헌

  1. Huang C, Wang y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020;395(10223):497-506. https://doi.org/10.1016/s0140-6736(20)30183-5
  2. WHO COVID-19 dashboard. Geneva: World Health Organization; 2020. Available online, https://covid19.who.int/(05.23.2022).2022.
  3. Pascarella G, Strumia A, Piliego C, Bruno F, Del Buono R, Costa F, et al. COVID-19 diagnosis and management: a comprehensive review. J Intern Med 2020;288(2):192-206. https://doi.org/10.1111/joim.13091
  4. da Rosa Mesquita R, Francelino Silva Junior LC, Santos Santana FM, Farias de Oliveira T, Campos Alcantara R, Monteiro Arnozo G, et al. Clinical manifestations of COVID-19 in the general population: systematic review. Wien Klin Wochenschr 2021;133(7-8):377-82. https://doi.org/10.1007/s00508-020-01760-4
  5. Zolotovskaia IA, Shatskaia PR, Davydkin IL, Shavlovskaya OA. [Post-COVID-19 asthenic syndrome]. Zh Nevrol Psikhiatr Im S S Korsakova 2021;121(4): 25-30. https://doi.org/10.17116/jnevro202112104125
  6. Nalbandian A, Sehgal K, Gupta A, Madhavan MV, McGroder C, Stevens JS, et al. Post-acute COVID-19 syndrome. Nat Med 2021;27(4):601-15. https://doi.org/10.1038/s41591-021-01283-z
  7. Anaya J-M, Rojas M, Salinas ML, Rodriguez Y, Roa G, Lozano M, et al., Post-COVID study group. Post-COVID syndrome. A case series and comprehensive review. Autoimmunity Rev 2021;20(11):102947.
  8. Bruinen de Bruin Y, Lequarre AS, McCourt J, Clevestig P, Pigazzani F, Zare Jeddi M, et al. Initial impacts of global risk mitigation measures taken during the combatting of the COVID-19 pandemic. Saf Sci 2020;128:104773.
  9. Both LM, Zoratto G, Calegaro VC, Ramos-Lima LF, Negretto BL, Hauck S, et al. COVID-19 pandemic and social distancing: economic, psychological, family, and technological effects. Trends Psychiatry Psychother 2021;43(2):85-91. https://doi.org/10.47626/2237-6089-2020-0085
  10. Asghari S, Valizadeh A, Aghebati-Maleki L, Nouri M, Yousefi M. Endometriosis: perspective, lights, and shadows of etiology. Biomed Pharmac 2018;106: 163-74. https://doi.org/10.1016/j.biopha.2018.06.109
  11. Han SJ, Wu SP, Hawkins SM, Park MJ, Kyo S, Qin J, et al. Estrogen receptor β modulates apoptosis complexes and the inflammasome to drive the pathogenesis of endometriosis. Cell 2015;163(4):960-74. https://doi.org/10.1016/j.cell.2015.10.034
  12. Bloski T, Pierson R. Endometriosis and chronic pelvic pain: unraveling the mystery behind this complex condition. Nursing Women's Health 2008;12(5): 382.
  13. Song H, Won JE, Lee J, Han HD, Lee YJ. Korean red ginseng attenuates Di-(2- ethylhexyl) phthalate-induced inflammatory response in endometrial cancer cells and an endometriosis mouse model. J Ginseng Res 2021.
  14. Zheng Y, Liu X, Guo S-W. Therapeutic potential of andrographolide for treating endometriosis. Human Reprod 2012;27(5):1300-13. https://doi.org/10.1093/humrep/des063
  15. Almeida M, Shrestha AD, Stojanac D, Miller LJ. The impact of the COVID-19 pandemic on women's mental health. Archives Women's Mental Health 2020;23(6):741-8. https://doi.org/10.1007/s00737-020-01092-2
  16. Connor J, Madhavan S, Mokashi M, Amanuel H, Johnson NR, Pace LE, et al. Health risks and outcomes that disproportionately affect women during the Covid-19 pandemic: a review. Soc Sci Med 2020;266:113364.
  17. Demetriou L, Cox E, Lunde CE, Becker CM, Inxitti AL, Martinez-Burgo B, et al. The global impact of COVID-19 on the care of people with endometriosis. Front Glob Womens Health 2021;2:662732.
  18. Leonardi M, Horne AW, Vincent K, Sinclair J, Sherman KA, Ciccia D, et al. Self-management strategies to consider to combat endometriosis symptoms during the COVID-19 pandemic. Hum Reprod Open 2020;2020(2):hoaa028.
  19. Meresman GF, Gotte M, Laschke MW. Plants as source of new therapies for € endometriosis: a review of preclinical and clinical studies. Hum Reprod Update 2021;27(2):367-92. https://doi.org/10.1093/humupd/dmaa039
  20. Sutrisno S, Aprina H, Simanungkalit HM, Andriyani A, Barlianto W, Sujuti H, et al. Genistein modulates the estrogen receptor and suppresses angiogenesis and inflammation in the murine model of peritoneal endometriosis. J Tradit Complement Med 2018;8(2):278-81. https://doi.org/10.1016/j.jtcme.2017.03.002
  21. Kim KH, Lee EN, Park JK, Lee JR, Kim JH, Choi HJ, et al. Curcumin attenuates TNF-alpha-induced expression of intercellular adhesion molecule-1, vascular cell adhesion molecule-1 and proinflammatory cytokines in human endometriotic stromal cells. Phytother Res 2012;26(7):1037-47. https://doi.org/10.1002/ptr.3694
  22. Schall TJ, Bacon K, Toy KJ, Goeddel DV. Selective attraction of monocytes and T lymphocytes of the memory phenotype by cytokine RANTES. Nature 1990;347(6294):669-71. https://doi.org/10.1038/347669a0
  23. Kolahdouz-Mohammadi R, Shidfar F, Khodaverdi S, Arablou T, Heidari S, Rashidi N, et al. Resveratrol treatment reduces expression of MCP-1, IL-6, IL-8 and RANTES in endometriotic stromal cells. J Cell Mol Med 2021;25(2): 1116-27. https://doi.org/10.1111/jcmm.16178
  24. Zhang B, Zhou WJ, Gu CJ, Wu K, Yang HL, Mei J, et al. The ginsenoside PPD exerts anti-endometriosis effects by suppressing estrogen receptor-mediated inhibition of endometrial stromal cell autophagy and NK cell cytotoxicity. Cell Death Disease 2018;9(5). 574-574. https://doi.org/10.1038/s41419-018-0581-2
  25. Huang R, Chen S, Zhao M, Li Z, Zhu L. Ginsenoside Rg3 attenuates endometriosis by inhibiting the viability of human ectopic endometrial stromal cells through the nuclear factor-kappaB signaling pathway. J Gynecol Obstetrics Human Reprod 2020;49(1):101642.
  26. Kim MK, Lee SK, Park JH, Lee JH, Yun BH, Park JH, et al. Ginsenoside Rg3 decreases fibrotic and invasive nature of endometriosis by modulating miRNA-27b: in vitro and in vivo studies. Scientific Rep 2017;7(1). 17670- 17670. https://doi.org/10.1038/s41598-017-17956-0
  27. Cao Y, Ye Q, Xie S, Zhong R, Cui J, Zhou J, et al. Ginsenoside Rg3 inhibits angiogenesis in a rat model of endometriosis through the VEGFR-2-mediated PI3K/Akt/mTOR signaling pathway. PLoS One 2017;12(11):e0186520.
  28. Choi JH, Lee MJ, Park KS, Kin SH, In JG, Kwak YS, et al. Korean Red Ginseng alleviates dehydroepiandrosterone-induced polycystic ovarian syndrome in rats via its antiinflammatory and antioxidant activities. J Ginseng Res 2020;44(6):790-8. https://doi.org/10.1016/j.jgr.2019.08.007
  29. Lai Z-Z, Yang H-L, Shi J-W, Shen H-H, Wang Y, Chang K-K, et al. Protopanaxadiol improves endometriosis associated infertility and miscarriage in sex hormones receptors-dependent and independent manners. Int J Biol Sci 2021;17(8):1878-94. https://doi.org/10.7150/ijbs.58657
  30. Lee JH, Park JH, Won BH, Im W, Cho SH. Administration of red ginseng regulates microRNA expression in a mouse model of endometriosis. Clin Exp Reprod Med 2021;48(4):337-46. https://doi.org/10.5653/cerm.2021.04392
  31. Kim M, Sur B, Villa T, Yun J, Nah SY, Oh S. Gintonin regulates inflammation in human IL-1Δ-stimulated fibroblast-like synoviocytes and carrageenan/kaolin-induced arthritis in rats through LPAR2. J Ginseng Res 2021;45(5):575-82. https://doi.org/10.1016/j.jgr.2021.02.001
  32. Min J-H, Cho H-J, Yi Y-S. A novel mechanism of Korean red ginseng-mediated anti-inflammatory action via targeting caspase-11 non-canonical inflammasome in macrophages. J Ginseng Res 2021.
  33. Li X, Mo N, Li Z. Ginsenosides: potential therapeutic source for fibrosisassociated human diseases. J Ginseng Res 2020;44(3):386-98. https://doi.org/10.1016/j.jgr.2019.12.003
  34. Lee J-O, Yang Y, Tao Y, Yi Y-S, Cho JY. Korean red ginseng saponin fraction exerts anti-inflammatory effects by targeting the NF-κB and AP-1 pathways. J Ginseng Res 2022.
  35. Heo H, Kim Y, Cha B, Brito S, Kim H, Kim H, et al. A systematic exploration of ginsenoside Rg5 reveals anti-inflammatory functions in airway mucosa cells. J Ginseng Res 2022.
  36. Park J, Kim J, Ko E-S, Jeong JH, Park C-O, Seo JH, et al. Enzymatic bioconversion of ginseng powder increases the content of minor ginsenosides and potentiates immunostimulatory activity. J Ginseng Res 2022;46(2):304-14. https://doi.org/10.1016/j.jgr.2021.12.005
  37. Ratan ZA, Youn SH, Kwak Y-S, Han C-K, Haidere MF, Kim JK, et al. Adaptogenic effects of Panax ginseng on modulation of immune functions. J Ginseng Res 2021;45(1):32-40. https://doi.org/10.1016/j.jgr.2020.09.004
  38. Hu Y, He Y, Niu Z, Shen T, Zhang J, Wang X, et al. A review of the immunomodulatory activities of polysaccharides isolated from Panax species. J Ginseng Res 2022;46(1):23-32. https://doi.org/10.1016/j.jgr.2021.06.003
  39. Song SB, Tung NH, Quang TH, Ngan NT, Kim KE, Kim YH. Inhibition of TNF-α mediated NF-κB transcriptional activity in HepG2 cells by dammarane-type saponins from panax ginseng leaves. J Ginseng Res 2012;36(2):146-52. https://doi.org/10.5142/jgr.2012.36.2.146
  40. Xu HL, Chen G-H, Wu Y-T, Xie L-P, Tan Z-B, Liu B, et al. Ginsenoside Ro, an oleanolic saponin of Panax ginseng, exerts anti-inflammatory effect by direct inhibiting toll like receptor 4 signaling pathway. J Ginseng Res 2022;46(1): 156-66. https://doi.org/10.1016/j.jgr.2021.05.011
  41. Lee SY, Kim M-H, Kim S-H, Ahn T, Kim S-W, Kwak Y-S, et al. Korean Red Ginseng affects ovalbumin-induced asthma by modulating IL-12, IL-4, and IL6 levels and the NF-kB/COX-2 and PGE(2) pathways. J Ginseng Res 2021;45(4):482-9. https://doi.org/10.1016/j.jgr.2020.10.001
  42. Kim M, Sur B, Villa S, Nah SY, Oh S. Inhibitory activity of gintonin on inflammation in human IL-1Δ-stimulated fibroblast-like synoviocytes and collagen-induced arthritis in mice. J Ginseng Res 2021;45(4):510-8. https://doi.org/10.1016/j.jgr.2020.12.001
  43. Shim J-Y, Kim M-H, Kim H-D, Ahn J-Y, Yun Y-S, Song J-Y. Protective action of the immunomodulator ginsan against carbon tetrachloride-induced liver injury via control of oxidative stress and the inflammatory response. Toxicol Appl Pharmacol 2010;242(3):318-25. https://doi.org/10.1016/j.taap.2009.11.005
  44. Saba E, Lee YY, Kim MK, Kim S-H, Hong S-B, Rhee MH. A comparative study on immune-stimulatory and antioxidant activities of various types of ginseng extracts in murine and rodent models. J Ginseng Res 2018;42(4):577-84. https://doi.org/10.1016/j.jgr.2018.07.004
  45. Kim I-K, Lee KY, Kang J, Park JS, Jeong J. Immune-modulating effect of Korean red ginseng by balancing the ratio of peripheral T lymphocytes in bile duct or pancreatic cancer patients with adjuvant chemotherapy. In Vivo (Athens, Greece) 2021;35(3):1895-900.
  46. Hyun SH, Ahn H-Y, Kim H-J, Kim SW, So S-H, In G, et al. Immuno-enhancement effects of Korean Red Ginseng in healthy adults: a randomized, double-blind, placebo-controlled trial. J Ginseng Res 2021;45(1):191-8. https://doi.org/10.1016/j.jgr.2020.08.003
  47. Ratan ZA, Haidere MF, Hong YH, Park SH, Lee J-O, Lee J, et al. Pharmacological potential of ginseng and its major component ginsenosides. J Ginseng Res 2021;45(2):199-210. https://doi.org/10.1016/j.jgr.2020.02.004
  48. Huang W-C, Huang T-H, Yeh K-W, Chen Y-L, Shen S-C, Liou C-J. Ginsenoside Rg3 ameliorates allergic airway inflammation and oxidative stress in mice. J Ginseng Res 2021;45(6):654-64. https://doi.org/10.1016/j.jgr.2021.03.002
  49. You L, Cha S, Kim M-Y, Cho JY. Ginsenosides are active ingredients in Panax ginseng with immunomodulatory properties from cellular to organismal levels. J Ginseng Res 2021.
  50. Wan Y, Wang J, Xu J-F, Tang F, Chen L, Rao C-L, et al. Panax ginseng and its ginsenosides: potential candidates for the prevention and treatment of chemotherapy-induced side effects. J Ginseng Res 2021;45(6):617-30. https://doi.org/10.1016/j.jgr.2021.03.001
  51. Jo S, Na HG, Choi YS, Bae CH, Song S-Y, Kim Y-D. Saponin attenuates diesel exhaust particle (DEP)-induced MUC5AC expression and pro-inflammatory cytokine upregulation via TLR4/TRIF/NF-κB signaling pathway in airway epithelium and ovalbumin (OVA)-sensitized mice. J Ginseng Res 2022.
  52. Hyun SH, Ahn H-Y, Kim H-J, Kim SW, So S-H, In G, et al. Immuno-enhancement effects of Korean Red Ginseng in healthy adults: a randomized, doubleblind, placebo-controlled trial. J Ginseng Res 2021;45(1):191-8. https://doi.org/10.1016/j.jgr.2020.08.003
  53. Lee YY, Irfan M, Quah Y, Saba E, Kim S-D, Park S-C, et al. The increasing hematopoietic effect of the combined treatment of Korean Red Ginseng and Colla corii asini on cyclophosphamide-induced immunosuppression in mice. J Ginseng Res 2021;45(5):591-8. https://doi.org/10.1016/j.jgr.2021.02.004
  54. Li W, Wang Y, Zhou X, Lu J, Sun H, Xie Z, et al. The anti-tumor efficacy of 20(S)- protopanaxadiol, an active metabolite of ginseng, according to fasting on hepatocellular carcinoma. J Ginseng Res 2022;46(1):167-74. https://doi.org/10.1016/j.jgr.2021.06.002
  55. Nakhjavani M, Smith E, Yeo K, Tomita Y, Price TJ, Yool A, et al. Differential antiangiogenic and anticancer activities of the active metabolites of ginsenoside Rg3. J Ginseng Res 2021.
  56. Park E-H, Kim Y-J, Yamabe N, Park S-H, Kim H-K, Jang H-J, et al. Stereospecific anticancer effects of ginsenoside Rg3 epimers isolated from heat-processed American ginseng on human gastric cancer cell. J Ginseng Res 2014;38(1): 22-7. https://doi.org/10.1016/j.jgr.2013.11.007
  57. Song J-H, Kim K-J, Choi S-Y, Koh E-J, Park JD, Lee B-Y. Korean ginseng extract ameliorates abnormal immune response through the regulation of inflammatory constituents in Sprague Dawley rat subjected to environmental heat stress. J Ginseng Res 2019;43(2):252-60. https://doi.org/10.1016/j.jgr.2018.02.003
  58. Mulchandani R, Lyngdoh T, Kakkar AK. Deciphering the COVID-19 cytokine storm: systematic review and meta-analysis. Eur J Clin Invest 2021;51(1): e13429.
  59. Shuwa HA, Knight SB, Wemyss K, McClure FA, Pearmain L, Prise I, et al. Alterations in T and B cell function persist in convalescent COVID-19 patients. Med (N Y) 2021;2(6):720-735.e4. https://doi.org/10.2139/ssrn.3720301
  60. Jalali A, Dabaghian F, Akbrialiabad H, Foroughinia F, Zarshenas MM. A pharmacology-based comprehensive review on medicinal plants and phytoactive constituents possibly effective in the management of COVID-19. Phytother Res 2021;35(4):1925-38. https://doi.org/10.1002/ptr.6936
  61. Lee YY, Quah Y, Shin J-H, Kwon H-W, Lee D-H, Han JE, et al. COVID-19 and Panax ginseng: targeting platelet aggregation, thrombosis and the coagulation pathway. J Ginseng Res 2022;46(2):175-82. https://doi.org/10.1016/j.jgr.2022.01.002
  62. Lee WS, Rhee D-K. Corona-Cov-2 (COVID-19) and ginseng: comparison of possible use in COVID-19 and influenza. J Ginseng Res 2021;45(4):535-7. https://doi.org/10.1016/j.jgr.2020.12.005
  63. So S-H, Lee JW, Kim YS, Hyun SH, Han CK. Red ginseng monograph. J Ginseng Res 2018;42(4):549-61. https://doi.org/10.1016/j.jgr.2018.05.002
  64. Xiong Y, Chen L, Man J, Hu Y, Cui X. Chemical and bioactive comparison of Panax notoginseng root and rhizome in raw and steamed forms. J Ginseng Res 2019;43(3):385-93. https://doi.org/10.1016/j.jgr.2017.11.004
  65. Arablou T, Delbandi A-A, Khodaverdi S, Arefi S, Kolahdouz-Mohammadi R, Heidari S, et al. Resveratrol reduces the expression of insulin-like growth factor-1 and hepatocyte growth factor in stromal cells of women with endometriosis compared with nonendometriotic women. Phytother Res 2019;33(4):1044-54. https://doi.org/10.1002/ptr.6298
  66. Chowdhury I, Banerjee S, Driss A, Xu W, Mehrabi S, Nezhat C, et al. Curcumin attenuates proangiogenic and proinflammatory factors in human eutopic endometrial stromal cells through the NF-κB signaling pathway. J Cell Physiol 2019;234(5):6298-312. https://doi.org/10.1002/jcp.27360
  67. Jelodar G, Azimifar A. Evaluation of serum cancer antigen 125, resistin, leptin, homocysteine, and total antioxidant capacity in rat model of endometriosis treated with Curcumin. Physiol Rep 2019;7(4):e14016.
  68. Park S, Lim W, Bazer FW, Whang K-Y, Song G. Quercetin inhibits proliferation of endometriosis regulating cyclin D1 and its target microRNAs in vitro and in vivo. J Nutr Biochem 2019;63:87-100. https://doi.org/10.1016/j.jnutbio.2018.09.024
  69. Park S, Lim W, Bazer FW, Song G. Apigenin induces ROS-dependent apoptosis and ER stress in human endometriosis cells. J Cell Physiol 2018;233(4): 3055-65. https://doi.org/10.1002/jcp.26054
  70. Ferella L, Baston JI, Bilotas MA, Singla JJ, Gonz alez AM, Olivares CM, et al. Active compounds present inRosmarinus officinalis leaves andScutellaria baicalensis root evaluated as new therapeutic agents for endometriosis. Reprod Biomed Online 2018;37(6):769-82. https://doi.org/10.1016/j.rbmo.2018.09.018
  71. Escudero-Lara A, Argerich j, Cabanero D, Maldonado R. Disease-modifying ~ effects of natural Δ9-tetrahydrocannabinol in endometriosis-associated pain. Elife 2020;9.